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16.1 The linearized Wave equation

We will go here through an easy going, step by step, derivation of the
Dirac equation (in the ”chiral” representation), with the main focus on
the actual physical meaning of all it’s properties. Without such a focus on
the physics, Dirac’s equation can leave the reader with the impression that
its abstract mathematical nature somehow just miraculously produces the
correct answers at the end of a number of obscure mathematical manipu-
lations. This is not true however, all of the aspects of the Dirac equation
correspond to real physics which we can connect to visualizations in our
own familiar world, rather than in some abstract mathematical space.

We start at the very beginning. Say, we want to obtain a wave equation
which has solutions in the form of arbitrary functions, that shift along with
constant velocity c, ”on the light cone”. We can write down the first order
equations below in two dimensions t and r. These equations, however,
allow only one-directional propagation, either to the left or to the right
with a velocity of plus or minus c.

∂ψL
∂t

− c
∂ψL
∂r

= 0
∂ψR
∂t

+ c
∂ψR
∂r

= 0 (16.1)

The equations work because the shifting solutions have equal derivatives in
t and r up to a proportionality constant which denotes the velocity c. One
way to accommodate both left and right moving solutions is our second
order classical wave equation. This equation owes its bidirectional nature
to the parameter c2 which can be either (+c)2 or (−c)2.

∂2ψ

∂t2
− c2

∂2ψ

∂r2
= 0 ≡ E2 − c2p2

r = 0 (16.2)

But there is another possibility which combines both the linear nature of
(16.1) and the classical wave equation which has proved to be an equation
of fundamental importance. We do so by retaining the left and right mov-
ing waves as two separated components of a two component wave function.

ψ =
(
ψL
ψR

)
(16.3)

(
0 1
1 0

)
∂ψ

∂t
+ c

(
0 1
−1 0

)
∂ψ

∂r
= 0 (16.4)
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or

Υt∂ψ

∂t
+ c Υr ∂ψ

∂r
= 0 (16.5)

Where the matrices Υt and Υr have a number of notable properties when
multiplied together:

Υt =
(

0 1
1 0

)
, Υr =

(
0 1
−1 0

)
(16.6)

ΥtΥt = I, ΥrΥr = −I, ΥtΥr + ΥrΥt = 0 (16.7)

We see that the cross terms cancel which allows us to write the equation
as an operator on the wave function ψ. This operator, when applied twice,
gives us the classical wave equation:[

Υt ∂

∂t
+ cΥr ∂

∂r

]2

ψ = 0 ≡
[
∂2

∂t2
− c2 ∂

2

∂r2

]
ψ = 0 (16.8)

Thus, both the left and right going components ψL and ψR obey the clas-
sical wave equation. In general, we won’t explicitly show the unity matrix
I in the equations. So much about the mathematics, but what about the
physics? Look at the anti-diagonal nature of the matrices.

The linear equation for ψL leaves its result, (=0) on the other channel ψR
and visa versa. In case of the classical wave equation the result is zero,
that is, a left moving solutions doesn’t leave anything on the right moving
channel and nothing of ψR ends up on ψL. Both left and right moving
solutions move only in one direction and do so with speed c.

Now, we assumed that the right hand side (=0) contains the result of the
operator, which is true. But, knowing the classical wave equation, we know
that the result on the right hand side is actually the source of the wave
function ψ. (The four current jµ in the case of the electromagnetic field).
So, with respect to cause and result we should say that, because of (=0),
the right moving channel ψR is never a source for the left moving channel
ψL and visa versa. To actually describe the progression forwards in time,
the propagation, instead of tracking backwards in time to the source, we
need to apply the inverse of the operator, the Green’s function (or simply
the propagator).
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16.2 The chiral 2d Dirac equation

We can now make the next important step: We can couple the two channels
by going from the classical wave equation to the 2d Dirac equation. Again,
our two component equation is basically linear and it becomes the Klein
Gordon equation by applying the operator acting on ψ twice.[

Υt ∂

∂t
+ cΥr ∂

∂r

]
ψ = −i

(
mc2

~

)
ψ (16.9)

[
∂2

∂t2
− c2

∂2

∂r2

]
ψ = −

(
mc2

~

)2

ψ (16.10)

We see that both ψL and ψR obey the Klein Gordon equation. For the
physical meaning we go back once more to the simple spring/mass repre-
sentation of the (real) Klein Gordon equation.

Figure 16.1: The (real) klein-Gordon equation as a spring/mass system

The horizontal springs represent the classical wave equation and they allow
both left and right shifting solutions with a velocity c. The masses are
allowed to move in the vertical direction which represents their ”degree
of freedom”. The horizontal springs now represent the coupling between
the left and right moving solutions. A left moving solution exerts a strain
on a vertical string which opposes the displacement of the mass. The left
moving solution is reflected back to the right. The reflection is negative
since system tries to undo the change. Our equation tracks back to the
source, The source of ψL are the reflections of ψR and visa versa. Lets look
somewhat more into the matrices used.
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Υt =
(

0 1
1 0

)
, Υr =

(
0 1
−1 0

)
(16.11)

We see from Υt that the direction in time does’t change when going from
one channel to the other, we always keep on going backward in time,
tracking back the source of ψ. From the signs in Υr we see that the parity
in r is different in the two channels. In the version with three spatial
dimensions, all coordinates x, y and z are inverted. The channels have
opposed parity. We say that the left moving component ψL is said to have
left chirality while ψR is said to have right chirality.

To recall the all important observation here, is that, in going from the clas-
sical wave equation to the 2d Dirac equation, we have obtained solutions
which can move at other speed than plus c and minus c. In general any
speed between the two extremes becomes possible. We have subdivided
the physical process in linear steps with our two component chiral 2d Dirac
equation.

16.3 Plane wave solutions of the 2d Dirac equation

At this stage we can already use the 2d Dirac equation to derive what are
basically the plane wave solutions of the Dirac equation. We will look for
a solution in the form of.

ψ =
(
uL
uR

)
exp

(
−i Et

~
+ i

pr

~

)
(16.12)

Which contains a chiral two component term u and where the exponential
part represents the known eigenfunctions of the Klein Gordon equation.
We write out the linear equation in full:

[ (
0 1
1 0

)
∂

∂t
+ c

(
0 1
−1 0

)
∂

∂r

](
ψL
ψR

)
=
mc2

i~

(
ψL
ψR

)
(16.13)

and we substitute (16.12) in (16.13) which gives us two coupled equations
in the components UL and UR:
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1
i~

( E + cp ) uR =
mc2

i~
uL (16.14)

1
i~

( E − cp ) uL =
mc2

i~
uR (16.15)

Which are satisfied by the plane wave solutions of the 2d Dirac equation,
where we have used

√
E2 − c2p2 = mc2.(

uL
uR

)
φ+

=
( √

E − cp√
E + cp

)
φ+

(16.16)

In which φ+ is the exponential function in (16.12). Repeating the same
procedure for anti-particles by reversing the sign of the energy E in equa-
tion (16.12) gives us the plane wave solution for anti-particles:(

vL
vR

)
φ− =

( √
E + cp

−
√
E − cp

)
φ− (16.17)

16.4 An interpretation of the chiral components

By coupling the two independent chiral parts of the linear wave equation
with a mass term we obtained the 2d Dirac equation which has solutions
that can move at any speed between plus c and minus c. In the massless
case the chiral components move at plus and minus c, now, at what speed
do they move in the case of of particles with mass?

We use here a method to obtain the speed of the chiral components which
has troubled physicist a lot especially with other representations of the
Dirac equation. In non relativistic quantum mechanics we can obtain the
velocity operator by taking the first order derivative in time of the position
operator by commuting it with the Hamiltonian, where the Hamiltonian
is understood to be energy given by −i~ ∂/∂t This is confirmed if we look
at the quantum mechanical velocity operator.

~v =
∂~r

∂t
=

i

~
[ H,~r ] =

(
−c 0

0 c

)
(16.18)

This result suggested a speed of +c or -c for the Dirac electron which
didn’t make sense. Now, note that the result is a 2x2 matrix operating on
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a two component function. So, we draw the conclusion that the operator
is working on the internal chiral components instead and that the result
suggest that the speed of ψL = −c and ψR = +c, just like in the massless
case of the linear wave equation. Now indeed, the result of equation (16.18)
is entirely independent of the mass.

Figure 16.2: The interplay between the chiral components

This confirms our assumptions about the left and right moving chiral com-
ponents being reflected back and forward into each other via the m term.
We see from the free plane wave solutions that both chiral components
balance each other out for particle at rest. The equal magnitude of the
components results in a speed of zero. At the other hand, at relativistic
speeds, only one the two chiral components remains.

Now, how do we calculate the speed of the whole particle? Well it turns
out that we can use the velocity operator discussed above perfectly well to
this. we need only to realize that the Hamiltonian used is also a 2x2 matrix
and operates on the external structure. In order to get an observable we
must let it operate on the two component wave function in the usual way.

1
2E

(
ψ∗L
ψ∗R

) (
−i~ I

∂

∂t

) (
ψL
ψR

)
= E (16.19)

where the term 1/2E is a normalization term. If we now apply the 2x2
velocity operator in the same way on the wave function then we get exactly
where we were looking for: The velocity of the whole particle.
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1
2E

(
ψ∗L
ψ∗R

) (
−c 0

0 c

) (
ψL
ψR

)
= v (16.20)

So, this operator which didn’t seem to make sense does just what it should
do after being applied in the right way. From figure 16.2 we see that there
are two fully independent paths of circulation. The phase relation between
the two paths determines the direction of the phase change in time of the
particle. If the real parts of the left and right components are in phase
then the energy is positive and the wave represents a particle. If the phase
between the real parts is opposite then the wave represents an anti-particle.

Figure 16.3: The front, body and tail zone of the interactions

We can distinguish roughly three different zones of interaction between
the chiral components, see figure 16.3, since the chiral components move
in opposite directions. In the middle zone where the parts overlap we will
see a mainly oscillatory behavior with a magnitude which stays more or
less constant depending on how fast the wave function spreads.

At the front side the other chiral component is diminishing rapidly and
stops being a source. The only contributions from the other side are com-
ing from the front-end after being reflected back and forward again. The
double reflection has changed the sign of the contribution. This negative
feedback rapidly damps the front-end of the wave function preventing it
from escaping away with the speed of light.
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At the tail end the other chiral component is predominantly the source.
The other side extends the tail. The result is that both sides keep basically
overlapping each other even though the move at opposite direction at the
highest speed possible.

Figure 16.4: Particle moving to the right

Figure 16.4 shows a simulation of a 2d Dirac equation wave-function. The
blue line represents ψR and the green line represents ψL. The speed de-
pends on the phase change in x representing the momentum of the particle.
The relation of the two chiral components is in principle the same as the
ratio in the free plane wave solution, with a small distortion from the
Gaussian wave shape.

The particle in figure 16.4 is a particle and not an antiparticle as can be
seen from the phase relation of the left and right hand chiral components:
They have the same phase. The particle spreads only minimally because
the size of the wave function is relatively large with respect to the Compton
radius of the particle which is inversely proportional to the mass.

Figure 16.5 shows a particle at rest which is spreading fast. The fast
spreading is the result of the initial compressed size of the wave function
at t is 0 relative to the Compton wavelength corresponding with the mass
of the particle. The particle keeps spreading with the momentum gained
and actually continues to spread faster. The oscillations at both ends are
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an indication of the local momentum. We see that the phase tends to get
equal all over the interior of the wave function.

Figure 16.5: Particle at rest spreading fast

16.5 The chiral propagation in 4d

At this point we would like to say something about the propagation of the
Dirac electron in the full 4d version of the theory. In fact we can already
derive it without knowing the form of the full Dirac equation itself.

Figure 16.6: The two chiral components in 4d
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We can go to the rest-frame of particle in the 2d version of the theory,
then extend the the 2d wave to a plane wave in 4d, that is, each 2d point
becomes a (constant) plane. Next we can go from the rest-frame in 4d to
an arbitrary frame in 4d. Image 16.6 shows how the momenta of the left
and right chiral components transform.

The role of the spin direction in 4d becomes apparent. We will see that
the ”spin” in 2d is aligned with the x-axis. In 4d however it can have
any direction. There are still two chiral components in 4d coupled via
the mass term. They reflect into each other via the ”spin-plane”, the
plane orthogonal to the spin pointer. The two chiral components transform
”light-like”. They propagate with c while averaging out to the speed v of
the particle. For ultra relativistic particles the spin itself transforms into a
direction which is closely parallel to the direction of motion, either forward
or backward, except for the case where the spin is exactly orthogonal to
the direction of motion.

16.6 The derivation of the Dirac equation

We are now ready to extend our 2d Dirac equation to the full relativistic
Dirac equation. The structure of the first will be wholly retained in the
latter. We therefor write it out in full here.

The 2d Dirac equation:

[ (
0 1
1 0

)
∂

∂t
+ c

(
0 1
−1 0

)
∂

∂r

](
ψL
ψR

)
=
mc2

i~

(
ψL
ψR

)
(16.21)

The 4d Dirac equation by comparison is defined by:

[ (
0 I
I 0

)
∂

∂t
+ c

(
0 σi

−σi 0

)
∂

∂ri

](
ψL
ψR

)
=
mc2

i~

(
ψL
ψR

)
(16.22)

The correspondence reflects Dirac’s original goal to construct a linear ver-
sion of the Klein Gordon equation. If the operator between brackets in
Dirac’s equation is applied twice then we obtain the usual second order
Klein Gordon equation for all individual components of the wave function
ψ. The only thing which is new in the Dirac equation are the σi. If we
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square the operator between brackets then we obtain many cross products
of these sigmas which should all cancel since the Klein Gordon equation
does not contain mixed derivatives. It is clear that cross products of (non-
zero) sigmas can only cancel in the case of matrices.

We found that if we apply the operator for the 2d Dirac equation twice we
actually switch between the two components of the two wave functions so
the ”square” of the operator is actually the product of the ψL and the ψR
operator:

(
∂

∂t
− c

∂

∂r

)(
∂

∂t
+ c

∂

∂r

)
ψ =

(
∂2

∂t2
− c2

∂2

∂r2

)
ψ (16.23)

This will be our starting point for determining the σi. We go to the
momentum space representation and set c to 1 merely to get a somewhat
cleaner and compacter notation. So for the 2d Dirac equation we have.

( E − pr)( E + pr ) ψ = ( E2 − p2
r ) ψ (16.24)

For the full 4d Dirac equation we need to include all three spatial dimen-
sions therefor we do need:

( E − σi · pi )( E + σi · pi ) ψ = ( E2 − p2
x − p2

y − p2
z ) ψ (16.25)

σi · pi = σxpx + σypy + σzpz (16.26)

It is clear that sigma products with equal indices should yield a unity
matrix while all the cross products should cancel. When Dirac derived his
relativistic equation in a 1928 landmark paper he already knew of a set of
2x2 matrices which do just this. These matrices were the Pauli matrices
introduced by Wolfgang Pauli a year earlier in his non relativistic extension
of the Schroödinger equation.

16.7 Introduction of the Pauli spinors and matrices

Pauli had constructed a two component version of the Schroödinger equa-
tion which included the intrinsic spin of the electron. The Stern Gerlach
experiments had demonstrated that the spin is found to be either up or
down. Furthermore, electron scattering experiments show us that up and
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down polarized electrons do not interfere with each other, much in the
same way that mixing horizontal and vertical polarized light doesn’t pro-
duce interference patterns. Now, since we can describe polarized light with
a two component function (H,V ) we understand Pauli’s idea to construct
a to construct spin equation with two components (Sz↑, Sz↓): Spin up and
down. A fundamental difference is that H and V are orthogonal with each
other under 90o while Sz↑ and Sz↓ are ”orthogonal” under 180o ...

sz↑ =
(

1
0

)
, sz↓ =

(
0
1

)
(16.27)

By choosing a particular coordinate for the spin-axis we expect an asymme-
try in the handling of the coordinates. We can always rotate the coordinate
system to align it with the spin, but there will be many cases with two or
more different spins. It turns out that we can describe any arbitrary spin
direction with the two component Pauli spinors. We expect a similar coor-
dinate dependence in the objects used to manipulate these Pauli spinors,
The Pauli σ matrices. This is indeed the case, as we will now finally turn
our attention to them after this long intermezzo:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
(16.28)

We see the expected asymmetry but we also see that σy is imaginary! We
see what’s happening here when we do a dot product of the position vector
~r with the Pauli matrices. This is a representative operation for a lot we’ll
see later on:

~r · ~σ =
(

z x− iy
x+ iy −z

)
(16.29)

It turns out that the x and y coordinates are grouped together into a single
complex plane. This makes it easy to describe rotations in the xy-plane
with the use of: r exp iφ = x+ iy. This isn’t bad at all since the z-axis is
the preferred axis of rotation in this coordinate system. We can associate
(x+ iy) and (x− iy) with spin up and down.

We still seem to have a non relativistic theory here since we are missing t.
The Dirac equation in the chiral representation, (The one we are treating
here), however handles t on equal footing as x, y and z. If we go back to
the Dirac equation (16.22) then we see that we can assign the I to σt
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σt =
(

1 0
0 1

)
(16.30)

If we now write out the corresponding dot four-product then we find:

rµσµ =
(

t+ z x− iy
x+ iy t− z

)
(16.31)

Again, it seems, we have something to explain here. Why does t match
up specifically with the z-axis? For now we can make the observation the
spin undergoes a relativistic transformation only if there is a component of
the speed v in the direction of the spin. That is, an object, either classical
or quantum mechanically, with its spin in the z-direction, keeps the same
spin vector it has in the rest frame, when it has an arbitrary velocity v but
limited to the xy-plane.

We will see that, by using only Pauli matrices, we can rotate and boost
the spin as it is incorporated in the Dirac equation in any relativistic way
we want.

16.8 Pauli spin matrices as spin 1/2 operators

We still need to show why all the cross terms cancel if we use the Pauli
matrices in the Dirac equation, and that by doing so we recover the Klein
Gordon equation for all the sub-components of the Dirac equation. By
working this out we’ll automatically hit the subject of the coming sections:
The Pauli matrices as the generators of the 3d rotation group. Now, the
sigmas had to be solutions of the following equation:

( E − σi · pi )( E + σi · pi ) ψ = ( E2 − p2
x − p2

y − p2
z ) ψ (16.32)

σi · pi = σxpx + σypy + σzpz (16.33)

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(16.34)

We see indeed that they are a correct solution. The squares of sigmas are
the unity matrices while the cross-products anti-commute.

σxσx = I, σyσy = I, σzσz = I (16.35)



16.8 Pauli spin matrices as spin 1/2 operators 15

σx σy = iσz σy σx = −iσz
σy σz = iσx σz σy = −iσx
σz σx = iσy σx σz = −iσy

(16.36)

Now, we get rid of the cross-terms in (16.32) because they always come in
pairs which cancel each other as (16.36) shows. Commutation rules played
a very important role in Quantum Mechanics from the days that people
were just starting to discover it. There was already the general rule for
angular momentum commutation in Heisenberg’s matrix mechanics:

Jx Jy − Jy Jx = i Jz

Jy Jz − Jz Jy = i Jx

Jz Jx − Jx Jz = i Jy
(16.37)

While the absolute value |J|2 = J2
x + J2

y + J2
z has the eigenvalue:

|J|2 = J(J + 1), L = 0, 1, 2 ... or J =
1
2
,

3
2
,

5
2
... (16.38)

Where the J should of course be angular momentum operators which are
build from the position operators and the differential momentum operators:
J i = xj∂k−xk∂j . Now, although the Pauli spin matrices are of a different
species, both (16.36) and (16.39) are satisfied if we declare the Pauli spin
matrices to be the spin momentum operators of spin 1/2 particles like:

J1/2 = s, and sx =
1
2
σx, sy =

1
2
σy, sz =

1
2
σz (16.39)

The commutation rules (16.36) now fulfill those of (16.36) and the eigen-
value of s can be written as.

|s|2 = s(s+ 1) =
1
2

(
1
2

+ 1) =
3
4

(16.40)

= s2x + s2y + s2z =
(

1
2

)2

+
(

1
2

)2

+
(

1
2

)2

(16.41)

So, mathematically this seems at least a very nice match. But there is
another very convincing argument for the sigmas to be spin operators and
the way Pauli include the Pauli spinors in Schrödinger’s equations: The
probability for a certain observable in Schrödinger’s theory is Ψ∗OΨ where
O is the operator for the observable. Now, if we define a two component
wave function in the form of:
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ψ = ξΨ, where ξ =
(

1
0

)
,

(
0
1

)
, .... (16.42)

Where ξ in fact can be any spinor in any direction, then:

ψ∗s ψ = (ξΨ)∗ s (ξΨ) = ξ∗Ψ∗s ξ Ψ = (ξ∗s ξ) Ψ∗Ψ (16.43)

So the Pauli spin operator only operates on the Pauli spinors and the result
is proportional to the probability density Ψ∗Ψ. If we now evaluate (ξ∗s ξ)
using the spin operator for the x, y and z-componens, and let it operate
on the up and down spins in the z-direction then we find exactly what we
want to.(

1
0

)∗
sz

(
1
0

)
=

1
2
,

(
0
1

)∗
sz

(
0
1

)
= −1

2
(16.44)

(
1
0

)∗
sx

(
1
0

)
= 0,

(
0
1

)∗
sx

(
0
1

)
= 0 (16.45)

(
1
0

)∗
sy

(
1
0

)
= 0,

(
0
1

)∗
sy

(
0
1

)
= 0 (16.46)

We see that we have retrieved the components of the spin z-up and spin
z-down spinors in the x, y and z-directions. We have extracted a normal 3d
spin-vector from the spinor representation. This holds under all conditions.
In general, the spin operators will always return the x, y and z components
of the spinor, multiplied by one-half, thus:

~S =
1
2
ξ∗~σ ξ (16.47)

Where ~S is a normal 3d vector. In this way we can transform spinors
in spinor space back into normal vectors. Mathematically this is all very
satisfying. In the coming sections we will look more into the physics of
how Pauli spinors behave under rotation and the role of the spin matrices.

16.9 Spinor rotations over 720 degrees

We did already mention that electrons with spin up do not interfere with
electrons with spin down, much like horizontal and vertical polarized light
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does not interfere. So we can define polarized light by its orthogonal (H,V)
components, and electrons by its ”orthogonal” (Up, Down) components.
Orthogonal between quotes ”” because Up and Down are under 180 degrees
rather than 90 degrees.

rotating the spin-axis over 720 degrees

This angle or phase ”doubling” is a very general property of all fermions
(spin 1/2 particles). If we physically manipulate an electron to rotate its
spin, or equivalently, its magnetic moment, (which isn’t really hard to do),
then we find something quiet interesting.

When we rotate the magnetic moment of the electron first by 180 degrees
from up to down, and then further to Up again, then, after having rotated
it by 360 degrees then we expect physically the same electron back. Now
this is not true, in fact the 360 degrees rotated electron has been inverted
in some sense because it would negatively interfere if we would mix it with
a similar non rotated electron (or with a non-rotated part of it’s own wave
function). If we continue to rotate the electron via 540 degrees (spin down)
and further to 720 degrees (spin up again), only then we find a physically
identical electron back!

Although admittedly strange, we can imagine such a behavior classically
because we have assigned a spin to the electron, and through its gyromag-
netic moment it is quite ”aware” that it is being rotated. However, going
one step further, we see that a simple classical spin only is not yet enough:
The same also happens if the is electron rotates around its own spin axis:

rotation around the spin-axis of 720 degrees

An electron rotated 360 degrees around its spin axis is also its own inverse
in the sense of interference. A simply spinning classical object’s gyromag-
netic moment does not interact with a rotation around the spin-axis. Now,
this again is not so much of a problem since all attempts to model the elec-
tron classically involve precession. And in fact it has to do so classically
since the relation of the spin component value of 1/2 and the total spin
of
√
s(s+ 1) leads to a precession around the principle spin axis with an

angle of:
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θ = cos−1

 1
2√

1
2

(
1
2 + 1

)
 = 54.7356... degrees (16.48)

Interesting as it is, we leave the classical equivalent for what it is here
for the time being. The message is that, both classically and quantum
mechanically, one can argue that the electron has the means to detect
rotations around any axis and that such a rotation could have consequently
the physical results we see. It is not necessary that we, for instance, should
revert to the conclusion that the 720 degrees behavior of fermions is the
result of some unclear property of the ”structure” of space-time.

16.10 The spin direction and the phase of the spinor

The fact that the rotation of a spinor around its own spin axis has physical
consequences, and also separates spinors from the simple three component
spin vector. A spinor embodies more information as the 3d vector does.
It doesn’t only encompasses a spin-direction but also a spin phase. This
means that a particle with spin up in the z-direction can have different
spinors which point all in the same direction.

0◦ =
(

1
0

)
, 180◦ =

(
−i

0

)
, 360◦ =

(
−1

0

)
, 540◦ =

(
i
0

)
(16.49)

ξ =
(

1
0

)
e−ip·k ⇒ 1

2
ξ∗~σ ξ =

{
0, 0,

1
2

}
(16.50)

We see that the rotation is indeed twice as fast as the phase changes would
suggest. However, we do not see double frequencies in interference experi-
ments since it’s the ”360◦ part” which interferes with the ”720◦ part”. We
see exactly the interference frequencies which we expect from the phase
change since both effects cancel.

Pauli spin matrices as 180 degrees rotation operators

We can define 180◦ spinor rotations around any axis directly with Pauli’s
spin matrices. σx and σy reverse the spin in the z-direction so equation
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Figure 16.7: Spinor rotations (spin direction and phase)

(16.47) yields zeros for the x and y components of a particle with its spin
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in the z-direction.

iσx = −180◦ rotation around the x-axis
iσy = −180◦ rotation around the y-axis
iσz = −180◦ rotation around the z-axis

(16.51)

Here we recover the geometric rule that a rotation of 180◦ around the x-
axis followed by a 180◦ rotation around the y-axis is the same as a 180◦

rotations around the z-axis. Rotations over 180 degrees and -180 degrees
map to the same direction but differ in the overall sign. All 6 combinations
are summarized below. (Note that the matrices operate from right to left)

iσy iσx = iσz iσx iσy = −iσz
iσz iσy = iσx iσy iσz = −iσx
iσx iσz = iσy iσz iσx = −iσy

(16.52)

All six cases are shown in fig.(16.7), which shows both the spin directions
as well as the spinor phase. They are also written out in detail for reference
below in (16.53). The image uses + and − signs to distinguish between
spinors with the same direction and phase but rotated over 360◦ and thus
each others inverse.

iσy iσx =
(

1
0

)
→

(
0
i

)
→

(
i
0

)
= iσz

iσx iσy =
(

1
0

)
→

(
0
−1

)
→

(
−i

0

)
= −iσz

iσz iσy =
(

1
0

)
→

(
0
−1

)
→

(
0
i

)
= iσx

iσy iσz =
(

1
0

)
→

(
i
0

)
→

(
0
−i

)
= −iσx

iσx iσz =
(

1
0

)
→

(
i
0

)
→

(
0
−1

)
= iσy

iσz iσx =
(

1
0

)
→

(
0
i

)
→

(
0
1

)
= −iσy

(16.53)
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16.11 General spinor rotations

It is a small step to general rotation expressions once we have the rotation
over 180◦. Since continuous rotation is a repetition of infinitesimal rota-
tions we can write the general rotations over the various axis as exponential
functions.

exp
(
−i φ/2 σx

)
= φ degrees rotation around the x-axis

exp
(
−i φ/2 σy

)
= φ degrees rotation around the y-axis

exp
(
−i φ/2 σz

)
= φ degrees rotation around the z-axis

(16.54)

The exponential functions are 2x2 matrices with 2x2 matrices in the argu-
ment. It is however simple to get an expression without this complication
if we look at the series development.

exp
(
i
φ

2
σi
)

= I −i
(
φ

2
σi
)
− 1

2!

(
φ

2
σi
)2

+
i

3!

(
φ

2
σi
)3

+ ... (16.55)

All even powers of the sigmas are unity matrices well all the odd powers
are consequently simply the Pauli spin matrices. The exponential function
therefor splits in a cosine and a sine function with no more matrices in the
arguments.

exp
(
− i

2
φ σi

)
= I cos

(
−φ

2

)
+ iσi sin

(
−φ

2

)
(16.56)

We can now write the general rotation operators directly as 2x2 matrices.

exp
(
− i

2
φ σx

)
=
(

cos(−φ/2) i sin(−φ/2)
i sin(−φ/2) cos(−φ/2)

)
(16.57)

exp
(
− i

2
φ σy

)
=
(

cos(−φ/2) sin(−φ/2)
− sin(−φ/2) cos(−φ/2)

)
(16.58)

exp
(
− i

2
φ σz

)
=
(

exp(−iφ/2) 0
0 exp(+iφ/2)

)
(16.59)

Rotations around z in the x+iy plane are given by complex exponentials
as we expected while rotations around y in the (x,z) plane are given by the
classical 2x2 rotation matrix.
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16.12 The wave’s phase as the spinor phase

We can now show that the spin up and down spinors in the other directions
are always the eigenfunctions of the rotation operators while the phase of
the wave function is the eigenvalue of the rotation operators. Using 2ω = φ
we can write down:

———— rotation of x-spinors around the x-axis ————- (16.60)

√
2 x ↑ :

(
1
1

)
e−iω =

(
cos(−ω) i sin(−ω)
i sin(−ω) cos(−ω)

)(
1
1

)
√

2 x ↓ :
(

1
−1

)
e+iω =

(
cos(−ω) i sin(−ω)
i sin(−ω) cos(−ω)

)(
1
−1

)

———— rotation of y-spinors around the y-axis ————- (16.61)

√
2 y ↑ :

(
1
i

)
e−iω =

(
cos(−ω) sin(−ω)
− sin(−ω) cos(−ω)

)(
1
i

)
√

2 y ↓ :
(

1
−i

)
e+iω =

(
cos(−ω) sin(−ω)
− sin(−ω) cos(−ω)

)(
1
−i

)

———— rotation of z-spinors around the z-axis ————- (16.62)

z ↑ :
(

1
0

)
e−iω =

(
exp(−iω) 0

0 exp(+iω)

)(
1
0

)
z ↓ :

(
0
1

)
e+iω =

(
exp(−iω) 0

0 exp(+iω)

)(
0
1

)

We see that a spinor always rotates (clock wise) around its own axis as
the phase ω of the wave function increases, and counter-clock-wise when
the phase goes as −ω. It rotates twice as fast in space as the phase ω of
the wave function progresses. Nevertheless, interference patterns do have
the same wavelength since 360◦ instead of 180◦ rotated parts of the wave
function interfere. Remember the spinor direction is local at each point of
the wave function. There is no global rotation, but the spin is distributed
all over the wave function.
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16.13 Rotation operator of the full chiral bi-spinor

We can now write down the complete rotation operator for the (bi-spinor)
Dirac wave functions:(

ψL
ψR

)
rotate

⇒ exp
{
−φ i

2

(
σi 0
0 σi

)} (
ψL
ψR

)
(16.63)

ξ(φ,θ,α) = eiα/2
(
e−iφ/2 cos(θ/2)
e+iφ/2 sin(θ/2)

)
(16.64)

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(16.65)

Both ψL and ψR are transformed (individually) in the just same way as
the single spinor cases we studied in this section. We can transform this
expression inside-out into (block-diagonal) 4x4 matrices with the method
we used above.

16.14 Weyl’s chiral bi-spinors and relativity

We can now finally return to the full Dirac equation after having exhaust-
edly treated the physics of Pauli’s spinors and spin matrices. Note that
the treatment of spin was entirely non-relativistic. We will now include
the time dimension and look at the relativistic aspects. We’ll be pleasantly
surprised when we find out how close we already are with what we have
done so far.

Recall our first presentation of Dirac’s equation (16.22) We can simplify
the notation by using four-vectors and setting c to 1. We get for the Dirac
equation:

(
0 σµ

σ̃µ 0

)
∂

∂xµ

(
ψL
ψR

)
=
mc2

i~

(
ψL
ψR

)
(16.66)

with the spin matrices:

σt =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
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and

σµ = ( σt, σx, σy, σz ), σ̃µ = ( σt, −σx, −σy, −σz ) (16.67)

Where the spin matrix for time is simply the unity matrix. We can write
the equation even more compact with the use of the gamma matrices.

γµ∂µψ = mψ, where γµ =
(

0 σµ

σ̃µ 0

)
(16.68)

Mathematically, since we have figured out how to do a rotation in a plane
spanned by two (spatial) coordinate axis, and, a boost can be viewed as a
skewed rotation in a plane spanned by time and the direction of the boost,
we might suspect that boost are just around the corner. Indeed, the boost
and rotation generators can be written in a simple combined form:

Sµν =
1
4

[
γµ , γν

]
=

i

4
(γµγν − γνγµ) (16.69)

Where the rotation generators are given by:

Sij = Sk =
1
4

[
γi , γj

]
= − i

2

(
σk 0
0 σk

)
(16.70)

Which can be compared with equation (16.63) for the general rotation
operator. The boost generators are.

S0i =
1
4

[
γ0 , γi

]
= −1

2

(
σi 0
0 −σi

)
(16.71)

So, similar to equation (16.63) we can now define the general boost operator
for 4d Dirac spinors with ϑ as the boost which relates to the speed as
β = tanhϑ.(

ψL
ψR

)
boost
⇒ exp

{
−ϑ1

2

(
σi 0
0 −σi

)} (
ψL
ψR

)
(16.72)
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16.15 The 2d spinor boost operators

The Pointcaré group provides a high level abstract mathematical frame
work. However, the unique insights it offers are merely a guide on the
journey to understand the physical meaning of the mathematics represent-
ing the Dirac equation. First we want to take a step back to the simpler 2d
Dirac equation and study its physical behavior under boosts. All of what
we find here applies to the Dirac equation as well, and can be straightfor-
wardly reused in the case of the Dirac equation. We will find that many
aspects normally associated with Dirac’s 4d equation only apply to the
2d Dirac equation as well. The 2d Dirac equation’s equivalent of (16.90)
becomes.(

ψL
ψR

)
boost
⇒ exp

{
−ϑ

2

(
1 0
0 −1

)} (
ψL
ψR

)
(16.73)

Plane wave solutions of the 2d Dirac equation

We split the wave function ψ in a two-component chiral pair u = (uL, uR)
and a wave function φ which is a solution of the normal one component
Klein Gordon equation.(

uL
uR

)
φ boost

⇒ exp
{
−ϑ

2

(
1 0
0 −1

)} (
uL
uR

)
φ (16.74)

φ = exp
(
−i Et

~
+ i

prr

~

)
(16.75)

(
uL
uR

)
at rest

=
√
m

(
1
1

)
(16.76)

The chiral pair (uL, uR) is constant throughout the wave function of the
plane wave solution. The normalization

√
m is based on |ψ|2 = m, the rest

mass which is a Lorentz invariant scalar. We can bring the 2x2 matrix in
the argument of the exponential function to the outside in a similar way
we did in (16.55) because its powers cycle through the unity matrix.
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exp
{
−ϑ

2

(
1 0
0 −1

)} (
uL
uR

)
=

(
exp (−ϑ/2) uL
exp (+ϑ/2) uR

)
(16.77)

The diagonal matrix elements 1 and −1 become exp(ϑ/2) and exp(−ϑ/2)
and lead to the right hand term of (16.77) At this point we can see how ψL
and ψR are transformed individually. Can we already make an interpre-
tation here even though these are just subcomponents? Well, it turns out
that to some extent indeed we can do so. We started out with ψL and ψR
as left and right moving solutions on the light cone which become coupled
via the mass m. The coupling causes oscillation and the oscillation causes
interference which strongly suppresses the propagation on the light cone
and the wave function remains semi localized in case of a free particle and
fully localized in bounded states.

We get the answers we want if we still assume that ψL and ψR are basically
mass less components, moving on the light cone to the left and the right
of the wave function moving with a speed β. We expect the energy and
momenta to be determined by the red- and blue-shift expressions for a
particle moving at speed β.

————— relativistic blue shift —————

exp (+ϑ) =

√
1 + β

1− β
=

1√
1− β2

+
β√

1− β2
=

E + pr

m
(16.78)

————— relativistic red shift —————

exp (−ϑ) =

√
1− β
1 + β

=
1√

1− β2
− β√

1− β2
=

E − pr

m
(16.79)

This corresponds indeed with | exp(ϑ/2)|2 and | exp(−ϑ/2)|2. Massless
objects have a fixed relation between energy and momentum in the form
of the constant c. Assuming that each of the components contributes half
of the energy at rest we can write down:

ψL : EL = − cprL = exp (−ϑ)
1
2
m (16.80)



16.15 The 2d spinor boost operators 27

ψR : ER = + cprR = exp (+ϑ)
1
2
m (16.81)

Which we can simply add to obtain the total energy and momentum. We
see that this correspond with what we should expect.

E = EL + ER = cosh(ϑ) m =
m√

1− β2
(16.82)

pr = prL + prR = sinh(ϑ) m =
mβ√
1− β2

(16.83)

So, regardless of the interpretation, we have obtained a simple method
here to memorize the mathematical steps we took in order to check the
expression from which we started. We can write the behavior of our chi-
ral pair (uL, uR) under boost in a way familiar from the free plane wave
solutions of the Dirac equation with the help of (16.78) and (16.79).(

uL
uR

)
boost
⇒

( √
(E − pr)√
(E + pr)

)
(16.84)

At large boost only one of the two chiral components remains depending
on the direction of the boost.( √

(E − pr)√
(E + pr)

)
large boost in +r

⇒

(
0√
2E

)
(16.85)

( √
(E − pr)√
(E + pr)

)
large boost in -r

⇒

( √
2E
0

)
(16.86)

Anti particles of the 2d Dirac equation

Anti particles are distinguished from normal particles by the sign in fre-
quency of the wave function. We have seen that ψL and ψR are mutually
responsible for each others phase change.

φ = exp
(

+i
Et

~
+ i

prr

~

)
(16.87)

(
vL
vR

)
at rest

=
√
m

(
1
−1

)
(16.88)
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By changing the sign of ψR the coupling between ψL and ψR also changes
sign with a change in the sign of the frequency as the result. The transform
under boost of v is.(

vL
vR

)
boost
⇒

( √
(E − pr)

−
√

(E + pr)

)
(16.89)

Where the factors are the same as for particles with the sign as a result of
the definition.

16.16 The 4d spinor boost operators

We can now go to the full 4d spinor boost operator.(
ψL
ψR

)
boost
⇒ exp

{
−ϑ1

2

(
σi 0
0 −σi

)} (
ψL
ψR

)
(16.90)

Just like we did for the rotation operator we can move the exponential
function into the block matrix so that the operations on ψL and ψR become
explicitly separated.


exp

(
− ϑ/2 σi

)
ψL

exp
(

+ ϑ/2 σi
)
ψR

 = boost of ϑ along the xi-axis
(16.91)

The exponential functions are now reduced from 4x4 to 2x2 matrices (with
2x2 matrices in the argument). It is however simple to go one step further
and remove the matrix arguments from the exponential altogether. We
look at the series development.

exp
(
ϑ

2
σi
)

= I +
(
ϑ

2
σi
)

+
1
2!

(
ϑ

2
σi
)2

+
1
3!

(
ϑ

2
σi
)3

+ ... (16.92)

All even powers of the sigmas are unity matrices well all the odd powers
are consequently simply the Pauli spin matrices. The exponential function
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therefor splits in a cosine and a sine function with no more matrices in the
arguments.

exp
(
ϑ

2
σi
)

= I cosh (
ϑ

2
) + σi sinh (

ϑ

2
) (16.93)

We can now write the general boost operators directly as explicit 2x2
matrices.

exp
(
ϑ

2
σx
)

=
(

cosh(ϑ/2) sinh(ϑ/2)
sinh(ϑ/2) cosh(ϑ/2)

)
(16.94)

exp
(
ϑ

2
σy
)

=
(

cosh(ϑ/2) i sinh(ϑ/2)
−i sinh(ϑ/2) cosh(ϑ/2)

)
(16.95)

exp
(
ϑ

2
σz
)

=
(

exp(ϑ/2) 0
0 exp(−ϑ/2)

)
(16.96)

We can show that a 2-spinor pointing in a certain direction is the eigen-
function of the boost operator in that direction while the exp(ϑ/2) is the
eigenvalue of the boost operator. Using $ = ϑ/2 we can write down:

—————- boost x-spinor along the x-axis —————- (16.97)
√

2 x ↑ :
(

1
1

)
e+$ =

(
cosh($) sinh($)
sinh($) cosh($)

)(
1
1

)
√

2 x ↓ :
(

1
−1

)
e−$ =

(
cosh($) sinh($)
sinh($) cosh($)

)(
1
−1

)

—————- boost y-spinor along the y-axis —————- (16.98)
√

2 y ↑ :
(

1
i

)
e+$ =

(
cosh($) i sinh($)

−i sinh($) cosh($)

)(
1
i

)
√

2 y ↓ :
(

1
−i

)
e−$ =

(
cosh($) i sinh($)

−i sinh($) cosh($)

)(
1
−i

)

—————- boost z-spinor along the z-axis —————- (16.99)

z ↑ :
(

1
0

)
e+$ =

(
exp($) 0

0 exp(−$)

)(
1
0

)
z ↓ :

(
0
1

)
e−$ =

(
exp($) 0

0 exp(−$)

)(
0
1

)
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Plane wave solutions of the 4d Dirac equation

When we know the general boost operator then we automatically know
the 4d plane wave solutions, the eigen-functions of the 4d Dirac equation.
For a plane-wave solution the left and right 2-spinors ξ are equal in the
rest frame. After a boost they become different

ψ =
(
ξ
ξ

)
e−iEot/~ boost

⇒

(
ξ′L
ξ′R

)
e−iEt/~+i~p·~x/~ (16.100)

We recall equation (16.91) here for the general boost operator.

 ψL

ψR

 boost
⇒


exp

(
− ϑ/2 σi

)
ψL

exp
(

+ ϑ/2 σi
)
ψR

 (16.101)

Looking at (16.93) we see that we can write the components as.

exp
(
±ϑ

2
σi
)

=
√

cosh (ϑ)I ± sinh (ϑ)σi (16.102)

So that we can write the general boost operator in a compact form.

√
m

(
ξ
ξ

)
e−iEot/~ boost

⇒

( √
pµ · σ ξ√
pµ · σ ξ

)
e−iEt/~+i~p·~x/~ (16.103)

With pµ = ( pt, px, py, pz ), and pµ = ( pt,−px,−py,−pz ). We can
thus write for the bi-spinors of the plane-wave eigen-function for the Dirac
particle and its anti-particle.

u(p) =
( √

pµ · σ ξ√
pµ · σ ξ

)
, v(p) =

(
+√pµ · σ ξ
−
√
pµ · σ ξ

)
(16.104)

Where the sign of the right chiral component changes because the coupling
between the two components changes from m to -m.


