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2 Chapter 2. Lorentz contraction from the classical wave equation

2.1 Moving solutions of the classical wave equation

We turn our attention again to the classical wave equation. This time to
look at solutions which are moving with a constant speed v, say for instance
in the x-direction. An arbitrary function which shifts along with a speed
v in the x direction does satisfy equations which relates the derivatives in
t and x by the speed v in the following way:

∂Φ
∂t

= −v∂Φ
∂x

∂2Φ
∂t2

= v2∂
2Φ
∂x2

(2.1)

These equations are valid for any arbitrary potential function Φ. We can
combine the latter in the the the classical wave equation for three spatial
dimensions.

∂2Φ
∂t2

− c2
∂2Φ
∂x2

− c2
∂2Φ
∂y2

− c2
∂2Φ
∂z2

= 0 (2.2)

and use it to replace the 2nd order time derivative with the 2nd order
x-derivative in order to eliminate the time dependency. We get:(

1− v2

c2

)
c2
∂2Φ
∂x2

+ c2
∂2Φ
∂y2

+ c2
∂2Φ
∂z2

= 0 (2.3)

This shows that the solutions are Lorentz contracted in the direction of v
by a factor γ, The first order derivatives are higher by a factor γ and the
second order by a factor γ2. Velocities higher then c are not possible. This
proof can’t hardly be any simpler, however we want to study this in some
more detail by using the 3d-propagator.

Figure 2.1 shows how the field Φ propagates away from the charge spher-
ically while decreasing in amplitude 1/r. Thicker circles depict a higher
amplitude. The field behind the charge was emitted more recently, the
”circles” have a higher amplitude but are further separated. The field in
front of the charge was emitted longer ago, the circles have a lower ampli-
tude but they are compressed closer together.

Since the Lorentz contracted field is mirror-symmetric in the x-axis, we
conclude that the effect of the higher/lower amplitude apparently must be
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Figure 2.1: Electrostatic potential of a charge moving at 0.8 c

compensated by the effect of separation/compression. With this in mind
we can study the Liénard Wiechert potentials.

2.2 The Liénard Wiechert potentials

Alfred Liénard (in 1898) and Emil Wiechert (in 1900) determined the po-
tentials of an arbitrarily moving and accelerating point charge. They are
based on the assumption that the potentials spread from the source with
the speed of light with an attenuation of 1/r as we found when we derived
the propagator of the wave-function for three spatial dimensions. The
equations for the electric potential Φ and the magnetic vector potential A
are close to the classical ones:

Φ(~x, t) =
q

4πε0rret

[
1

(1− β cosφ)

]
(2.4)

~A(~x, t) =
q

4πε0rret

[
~β

(1− β cosφ)

]
(2.5)

Where:


~β = speed vector of the charge: ~v/c
rret = distance from the retarded charge.
1/(1− β cosφ) = compression or ’shockwave’ factor
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Note that the equations use the retarded charge location: The location
where the charge was at the moment when the potentials were emitted
from the point charge. From the formula’s we see that all the information
that is needed is:

(1) the charge, (2) its location, and (3) its speed.

We have this information if we know the position of the point charge at
two different moments in time, at t and at t+dt. The value of Φ at a single
point in space-time (t,r) therefor doesn’t contain any information about
the acceleration of the charge, it only depends on position and speed. This
is unlike the equations for the E and B fields which do in fact depend on
the acceleration, because they are based on the derivatives of the potential
fields.

Figure 2.2: The shockwave factor under various angles

The only thing which needs some explanation is the compression or ’shock-
wave’ factor. We concluded that this effect should occur in the previous
section on Lorentz contraction. It can become infinite in front of the mov-
ing charge (psi = 0) when the speed goes to c. This effect is equal to the
shockwave building up in front of a plane which approaches the speed of
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Figure 2.3: The shockwave factor λ is 1/(1− β cosφ)

sound. The smallest it can get is 1/2. This is behind the charge when it
is moving at c.

From figure 2.3 we see that the propagation under a non-transversal angle
received by an observer is emitted at different moments. The propagation
from the tail travels c∆t longer as the propagation from the front. This
effectively stretches the length of the charge ∆L to ∆L+v∆t. The effective
length of the charge relates to the extra time as:

(v∆t+ ∆L) cosφ = c∆t ⇒ ∆t =
∆L cosφ
c− v cosφ

(2.6)

Having obtained an expression for ∆t we can calculate the effective length.
The relative increase of the length is equal to the relative increase of the
potentials fields due to the shock factor. For the increased length ∆L′ we
get:

∆L′ = ∆L+ v∆t = ∆L+
v∆L cosφ
c− v cosφ

=
∆L

1− v
c cosφ

=
∆L

1− ~β · r̂ret
(2.7)

Shockwave factor: =
1

1− β cosφ
=

1

1− ~β · r̂ret
(2.8)
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2.3 The Lorentz contracted EM potentials

To obtain the Lorentz contracted fields from the Liénard Wiechert poten-
tials we need to rewrite them with the respect to the current location of
the charge instead of the retarded using the fact that the velocity is now
constant. If we locate the current position at the origin then we can derive
the distance from any point (x, y, z) to the retarded location and the angle
φ belonging to that location.

rret =
√

(x+ vt)2 + y2 + z2, cosφ =
(x+ vt)√

(x+ vt)2 + y2 + z2
(2.9)

Checking this from positions on the three principle axis we find for the
Lorentz contracted potential.

(x, 0, 0) ⇒ rret = x/(1− β), cosφ = ±1
(0, y, 0) ⇒ rret = γ y, cosφ = β
(0, 0, z) ⇒ rret = γ z, cosφ = β

(2.10)

giving the potential fields on the principle axis:

Φ(x, 0, 0) =
q

4πε0x
, ~A(x, 0, 0) =

~β q/c

4πε0x
(2.11)

Φ(0, y, 0) =
γ q

4πε0y
, ~A(0, y, 0) =

γ~β q/c

4πε0y
(2.12)

Φ(0, 0, z) =
γ q

4πε0z
, ~A(0, 0, z) =

γ~β q/c

4πε0z
(2.13)

The general expressions for the Lorentz contracted potentials for a charge
moving on the x-axis:

Φ(x, y, z) =
γ q

4πε0
√

(γx)2 + y2 + z2
(2.14)

~A(x, y, z) =
γ ~β q/c

4πε0
√

(γx)2 + y2 + z2
(2.15)
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Which is indeed what we would expect from the previous section. The
potential fields are Lorentz contracted by a factor γ while the amplitude
of the potentials are also multiplied by a factor γ. The result is that the
potentials in front and behind the moving charge are equal to those of a
charge at rest, while the potentials at 90 degrees angles with the velocity
are higher by a factor γ.

2.4 The Lorentz transform of the EM potentials

We can now derive the general Lorentz transform of the EM potential field.
We can then check the transform with what we derived in the previous
section: Φ and ~A of a moving charge. We did so with the help of the
Liènard Wiechert potentials. We did derive the LW potentials from the
propagator of the field which in turn we derived from the classical wave
equation. We can combine Φ and ~A into a single four vector Aµ = {Φ/c , ~A}
(in the SI-unit system). Often we will omit c by defining it to be 1.

Figure 2.4: Rotation and boost of a vector field

The Lorentz transform of the electromagnetic potential Aµ is the transform
of a (four-) vector field. The simplest transform of a field is that of a
(Lorentz) scalar field. A scalar has the same value in every reference frame,
all we have to do is a Lorentz coordinate transformation and the new gives
us the scalar value at the new positions.
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In case of a vector field we also need to transform the vector itself as shown
in figure 2.4. In this case we can simply treat the four vector Aµ as the
four vector xµ. The standard Lorentz coordinate transform (with c = 1)
is given by.

forward transform backward transform

t′ = γ
(
t − ~β · ~x

)
t = γ

(
t′ + ~β · ~x′

)
~x′‖ = γ

(
~x‖ − ~β t

)
~x‖ = γ

(
~x′‖ + ~β t′

)
~x′⊥ = ~x⊥ ~x⊥ = ~x′⊥

(2.16)

Where we have split ~x into ~x‖+~x⊥, the components parallel and orthogonal
to the boost β. We now simply replace xµ with Aµ to obtain the Lorentz
transform of the potential field.

Lorentz transformation of the electromagnetic four-vector Aµ

forward transform backward transform

Φ′ = γ
(

Φ − ~β · ~A
)

Φ = γ
(

Φ′ + ~β · ~A′
)

~A′‖ = γ
(
~A‖ − ~β Φ

)
~A‖ = γ

(
~A′‖ + ~β Φ′

)
~A′⊥ = ~A⊥ ~A⊥ = ~A′⊥

(2.17)

Where we have used c=1 (for full SI replace Φ by Φ/c). The parallel and
orthogonal components can be given as vector expressions involving the
unit-vector β̂ in the direction of the boost.

~A‖ = ( β̂ · ~A ) β̂ parallel component with regard to ~β

~A⊥ = ( β̂ × ~A )× β̂ orthogonal component with regard to ~β
(2.18)
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In the simple case of a transformation from the rest-frame of the source
charge of the field to a boosted frame we can write.(

Φ/c, ~A
)

transforms like
(
γ, ~βγ

)
(2.19)

We see this back in the general expressions for the Lorentz contracted
potentials for a charge moving on the x-axis which we derived in section
2.3.

Φ(x, y, z) =
γ q

4πε0
√

(γx)2 + y2 + z2
(2.20)

~A(x, y, z) =
γ ~β q/c

4πε0
√

(γx)2 + y2 + z2
(2.21)

The changes x → γx are the result of the Lorentz contraction (the co-
ordinate transformation) while the factors γ and ~βγ are the result of the
transformation of the transformation of the four-vector Aµ.

2.5 The Lorentz transform of charge and current

Since the electromagnetic potential Aµ has as its source the charge/current
density jµ = { ρ ,~j } we may expect that Aµ and jµ transform in the same
way.

Lorentz transformation of the charge-current density jµ

forward transform backward transform

ρ′ = γ
(
ρ − ~β ·~j

)
ρ = γ

(
ρ′ + ~β ·~j′

)
~j′‖ = γ

(
~j‖ − ~β ρ

)
~j‖ = γ

(
~j′‖ + ~β ρ′

)
~j′⊥ = ~j⊥ ~j⊥ = ~j′⊥

(2.22)

Where the parallel and orthogonal components of ~j relative to the boost
are given by.
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~j‖ = ( β̂ · ~j ) β̂ parallel component with regard to ~β

~j⊥ = ( β̂ ×~j )× β̂ orthogonal component with regard to ~β
(2.23)

A charge density at rest transforms into a charge/current density as.(
ρ , ~j

)
transforms like

(
γ , ~βγ

)
(2.24)

The total charge Q and total current ~J

For sofar we have discussed the transformation of the charge and current
densities. The total charge and total current are obtained by integrating
over space. The space over which the charge/current is spread reduces by a
factor gamma, with the result that the total charge and current transform
less by a factor γ, thus.(

Q , ~J
)

transforms like
(

1 , ~β
)

(2.25)

This is a fundamental result. It means that the charge is reference frame
independent. The current is always proportional to the speed. This in
contrast with the energy/momentum of a particle which transforms as we
know like. (

E , ~p

)
transforms like

(
γ , ~βγ

)
(2.26)

Again we encounter something truly fundamental here. The energy/ mo-
mentum of a particle determines its resistance to the change of motion due
to a force exerted on the particle. The electromagnetic force is determined
by the value of the charge Q2, which in contrast to the ”relativistic mass”
γmc2 does not transform.

The difference of the factor γ in the way which E and Q2 transform now
leads to the effect of time dilatation whereby all processes proceed slower
by a factor γ. We will discuss this subject in more detail in chapter ??:
”Time dilation from the classical wave equation”.
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2.6 The Lorentz contracted E and B fields

We want to derive the E and B fields of a moving electric charge. This is
straightforwardly done by using Maxwell’s laws to obtain the field from the
potentials Φ and ~A. The general expressions for the Lorentz contracted
potentials for a charge moving on the x-axis are:

Φ(x, y, z) =
γ q

4πε0
√

(γx)2 + y2 + z2
(2.27)

~A(x, y, z) =
γ ~β q/c

4πε0
√

(γx)2 + y2 + z2
(2.28)

Where ~β = { βx , 0 , 0 } is along the x-axis. The E and B fields are
derived from the potentials by.

E = −grad Φ− ∂ ~A

∂t
(2.29)

B = curl ~A (2.30)

When written out in full these give us.

E =
{
−∂Φ
∂x
− ∂Ax

∂t
, − ∂Φ

∂y
− ∂Ay

∂t
, − ∂Φ

∂z
− ∂Az

∂t

}
(2.31)

B =
{

∂Az
∂y
− ∂Ay

∂z
,

∂Ax
∂z
− ∂Az

∂x
,

∂Ay
∂x
− ∂Ax

∂y

}
(2.32)

The magnetic vector potential components Ay and Az are zero while Ax
has a simple relation with the potential Φ:

Ax = βxΦ (2.33)

We can change a derivative in t to derivative in x by simply multiplying
it with −βx since our solution shifts in the x-direction with a speed vx, so
we have:

∂Ax
∂t

= −βx
∂Ax
∂x

= −β2
x

∂Φ
∂x

, thus: (2.34)
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Ex = −∂Φ
∂x
− ∂Ax

∂t
= −(1− β2

x)
∂Φ
∂x

(2.35)

This gives us for the Ex component of the electric field.

Ex =
(1− β2

x) γ3x q

4πεo(γ2x2 + y2 + z2)3/2
(2.36)

Ex =
γ x q

4πεo(γ2x2 + y2 + z2)3/2
(2.37)

The Ey and Ez components are simpler since Ay = Az = 0. These com-
ponents of the electric field become.

Ey =
γ y q

4πεo(γ2x2 + y2 + z2)3/2
, Ez =

γ z q

4πεo(γ2x2 + y2 + z2)3/2
(2.38)

We see that the factor (1− β2
x) was canceled by the extra factor γ2 due to

the differentiation along the (Lorentz contracted) x-axis. All nominators
have a similar form now so we can simply write this in vector form.

Electric field E of a moving charge

E =
γ ~r q

4πεo(γ2x2 + y2 + z2)3/2
(2.39)

When we derive the magnetic field B we see that the the E field and the
B field relate to each other in a simple way.

E = −~v × B, B =
~v

c2
× E (2.40)

So here we can obtain the magnetic field B simple from the electric field.

Magnetic field B of a moving charge

B =
γ
(
~β × ~r

)
q/c

4πεo(γ2x2 + y2 + z2)3/2
(2.41)
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Relation 2.40 holds for an arbitrary moving monopole point source. In the
limit cases for β = 0 we retrieve the standard static fields.

lim
β→0

E =
~r q

4πεor3
, lim

β→0
B =

~β × ~r q/c
4πεor3

(2.42)

We can represent these expressions in spherical coordinates with the help
of the replacement sin2 θ = (y2 + z2)/(x2 + y2 + z2)

E =
~r q

4πεo r3γ2(1− β2 sin2 θ)3/2
(2.43)

B =

(
~β × ~r

)
q/c

4πεo r3γ2(1− β2 sin2 θ)3/2
(2.44)

2.7 Lorentz transform of the E and B fields

In the previous section we made use of a relation between the electric and
magnetic fields of a moving (monopole) charge.

E = −~v × B, B =
~v

c2
× E (2.45)

We can prove this easily for a constant speed v with the help of the generic
expressions.

E = −grad Φ− ∂ ~A

∂t
, B = curl ~A (2.46)

Substitution gives us for the magnetic field.

B = curl ~A = − ~v

c2
× grad Φ − ~v

c2
× ∂ ~A

∂t
(2.47)

The last term with the time derivative is zero if the speed v is constant
due to the relation ~A = Φ~v/c2. The vector potential ~A points always in
the direction of ~v, so a change of ~A is also in the direction of ~v and the
cross product is always zero.
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~v

c2
× ∂ ~A

∂t
= 0 (2.48)

Without this term and after replacing ~A with Φ~v/c2 the remaining expres-
sion becomes.

B =
1
c2
∇× (Φ~v) =

1
c2
∇(Φ) × ~v (2.49)

Which is true due to the chain rule and ∇ × ~v = 0. in the situation of
an arbitrary charge/current density distribution this relation between E
and B obviously doesn’t hold, however, it does appears in the Lorentz
transform of the electromagnetic field.

In the case of the Lorentz transform of the EM-field under a (constant)
boost in velocity the relations (2.77) determine how the electric and mag-
netic field are transformed into each other. For instance in the case of a
boost in the x-direction.

E′x = Ex B′x = Bx
E′y = γ(Ey − vBz) B′y = γ(By + v

c2
Ez)

E′z = γ(Ez + vBy) B′z = γ(Bz − v
c2
Ey)

(2.50)

Which we can rewrite for an arbitrary boost using a short hand notation
for the various components of the fields parallel and orthogonal with regard
to the boost ~β and further simplified by setting c to 1.

Lorentz transform of the electromagnetic field

E′ = E‖ + E⊥ γ + B⊗ βγ
B′ = B‖ + B⊥ γ − E⊗ βγ

(2.51)

E‖ = ( β̂ · E ) β̂ parallel component with regard to ~β

E⊥ = ( β̂ × E )× β̂ orthogonal component with regard to ~β

E⊗ = ( β̂ × E ) 90o rotated orthogonal component
(2.52)
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We can apply these transformation expressions on a moving point charge
and check if we get the same results as in the previous section. First
we have to apply a coordinate transform. We are only interested in t′=0
where the particle is in the coordinate center. The fields of the particle
are independent on time in the particles rest-frame. So, al we need to do
is replacing x by γx which corresponds to the Lorentz contraction.

E =
~r q

4πεor3
⇒ ( γx x̂ + y ŷ + z ẑ ) q

4πεo(γ2x2 + y2 + z2)3/2
(2.53)

After the coordinate transformation we have to do the field transformation.
The electromagnetic field transforms, in the way as given above, as an anti-
symmetric tensor. which we will discuss in more detail in the chapter on
the relativistic formulation of fields.

From the Field transform equations (2.51) we see that the components
orthogonal to the boost acquire an extra factor γ while the component
parallel to the boost doesn’t. The total transformation, coordinate plus
field transformation thus yields:

E =
~r q

4πεor3
⇒ γ~r q

4πεo(γ2x2 + y2 + z2)3/2
(2.54)

Which corresponds to expression (2.39) which we derived in the previous
section. Now we want to obtain the magnetic field of a moving charge from
the general Lorentz transform of the magnetic field. In the rest frame there
is no magnetic field but we have to transform the rest-frames E field into
a magnetic field.

First step is again the coordinate transform of the E-field as in (2.53)
after which comes the field transform. This involves a cross-product ~β×E
which uses only the components orthogonal of E in (2.53) removing the
term γx x̂. The result we get corresponds with the magnetic field of a
moving charge which we derived in (2.41).

B =
γ
(
~β × ~r

)
q/c

4πεo(γ2x2 + y2 + z2)3/2
(2.55)
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2.8 The Liénard Wiechert E and B fields

It is important to realize that the potentials Φ and A are propagating on
the light cone and the electric and magnetic fields E and B are derivative
fields. If we would rewrite the formula’s for the E and B fields in the same
way using the retarded location and a shockwave factor then we obtain in-
correct expressions, which would for instance not show any electromagnetic
radiation.

We do however get the EM fields by carefully differentiating the potentials
in space and time. Carefully because we use retarded values in our for-
mula’s for Φ and A to obtain current values. Before we proceed into this
we’ll first have a look at the results:

E(~x, t) =
q

4πε0r2ret

[
(1− β2) ~rph

(1− β cosφ)3

]
+

q

4πε0rret

[
r̂ret × (~rph × ~a)
c2(1− β cosφ)3

]
(2.56)

B(~x, t) =
r̂ret
c
× E (2.57)

where:


~a = accelaration vector of the charge.
r̂ret = unit vector from retarded charge towards (~x, t)
~rph = vector (r̂ret − ~β) from phantom location to (~x, t)

with v � c this simplifies to:

E(~x, t) =
q

4πε0r2
r̂ − q

4πε0r
1
c2

r̂ × (r̂ × ~a) (2.58)

We see that the first term is the standard Coulomb field. The second
term is the radiation term which is proportional to the acceleration of the
charge. The radiation term decreases with only 1/r rather than with 1/r2

as the Coulomb field does. This leads to a finite energy flux (E × B)/µo
away from the charge at any r →∞.

A constant amount of energy has to be fed to the charge to keep it ra-
diating. This in contrast with the energy associated with the Coulomb
field. If we could ”create” a charge, (which we can’t because charge is a
conserved quantity), then the amount of energy we would need to build
up the Coulomb field would decrease by 1/t2 and reach some maximum in
the limit case of t going to infinity.
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2.9 The phantom location of a moving charge

An interesting phenomena is the appearance of the ’phantom’ location in
the general formula. This location is were the charge would be if it would
have continued at the same speed after the potentials left the charge at the
retarded position. The force from the generalized Coulomb field points to
(or from) the phantom location. The phantom location is the real current
location for a charge with constant velocity. It therefor might look like the
Coulomb field is an instantaneous field since, no matter how far away, the
field lines always point to the current location of charge. However, when
the charge changes its velocity and its path in the mean time then the
phantom location and the real current location no longer coincide.

Figure 2.5: The Coulomb field and the radiation field

At the other hand, The E and B components of the radiation field are
always orthogonal to the vector coming from the retarded position. The
Poynting vector representing the energy flux is always pointing away from
the retarded location. By looking at the radiation we can see where the
charge was at the moment that it was emitted. We see this effect also if
we look at the Sun. The light comes from the retarded position while the
gravitation pulls the earth into the direction of the phantom position. (The
gravitational field of a moving body behaves similar1 as the EM field).

1The phantom position in GR also involves an extra term making it an even better
extrapolation of the current to the future position.
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2.10 Derivation of the Liénard Wiechert E field

To derive the electric field E and the magnetic field B from the Liénard
Wiechert potentials we have to apply the standard formulas.

E = −∇Φ− 1
c

∂ ~A

∂t
, B = ∇× ~A (2.59)

However, we express the Liénard Wiechert potentials, and subsequently
the E and B fields, using retarded values, like the distance, speed, and
acceleration, that the charge had at the moment when the potentials were
emitted.

The above derivatives using dt and dx should therefor be translated to
retarded values like dt → dtret. To avoid too many subscripts we use
square bracket that enclose expressions which exist out of purely retarded
values. For dtret we can write:

dtret = dt +
[
~β · r̂

]
ret

dtret (2.60)

Which can be explained as follows: dt corresponds to a delta time at our
location where we calculate the E-field, while dtret is the corresponding
delta time at the source. We see that the delta time by which the potentials
were emitted increases if the charge moves closer towards us.

Figure 2.6: Relation between dt and dtret
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It takes a longer time at the beginning of dtret to propagate from source to
us as at the end of dtret since the charge has moved closer during the time
dtret. We recover the shockwave factor if we write down the ratio between
the time deltas:

∂tret
∂t

=
[

1

1− ~β · r̂

]
ret

(2.61)

We can now do the differentiation of an arbitrary function F in time by
first differentiating at retarded time and then correcting the result via the
chain rule.

∂Fret
∂t

=
∂Fret
∂tret

∂tret
∂t

=
[

1

1− ~β · r̂

]
ret

Ḟret (2.62)

We can do the same for the spatial derivatives. We go back to equation
(2.60) and replace dt with a spatial derivative:

dtret = −1
c

[
~r · ~dx
r

]
ret

+
[
~β · r̂

]
ret

dtret (2.63)

The first term on the right hand side now expresses the change in time
of the emission at the source when we shift our position of measurement
over a distance dx. If the displacement of dx is orthogonal to ~r then this
component of dtret becomes zero: The signal received at x and x+ dx was
emitted at the same time.

If the displacement along dx is parallel to ~r, then the time difference be-
comes maximal and equal to the time needed to move over a distance of
dx at the speed of light. We can reorder (2.63) to express the ratio of dtret
and dx:

∂tret
∂x

= −1
c

[
~rx/r

(1− ~β · r̂)

]
ret

(2.64)

We can use this relation to differentiate any arbitrary function F with
regard to x by first differentiating at retarded time to dtret and use chain
rule with the above result to get the derivative in x. Repeating this for y
and z we can write.
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∇ Fret = [ ∇F ]ret −
1
c

[
r̂

1− ~β · r̂

]
ret

Ḟret (2.65)

Using formulas (2.62) and (2.65) we can now derive the electric field E and
the magnetic field B from the Liénard Wiechert potentials. Using,

E = −∇Φ− 1
c

∂ ~A

∂t
(2.66)

Φ =
q

4πε0

∣∣∣∣∣ 1

r (1− ~β · r̂ )

∣∣∣∣∣
ret

, ~A =
q

4πε0

∣∣∣∣∣ ~β

r (1− ~β · r̂ )

∣∣∣∣∣
ret

(2.67)

We get the following expressions for the two terms making up E.

1
c

∂ ~A

∂t
=

q

4πεo

(
β̇/c

r(1− ~β · r̂ )2
+
−~β · r̂ + (β̇/c) · ~r + β2

r2(1− ~β · r̂ )3
~β

)∣∣∣∣∣
ret

(2.68)

∇Φ =
q

4πεo

(
r̂ − ~β

r2(1− ~β · r̂ )2
− −

~β · r̂ + (β̇/c) · ~r + β2

r2 (1− ~β · r̂ )3
r̂

)∣∣∣∣∣
ret

(2.69)

Which can be simplified using the substitutions λ = 1/(1− ~β · r̂ ) for the
shockwave factor and ~rph = r̂− ~β for the vector pointing from the phantom
position to the measurement point.

1
c

∂ ~A

∂t
=

q

4πεor2
(
λ2(r/c)β̇ + λ3

[
(r/c)β̇ · r̂ − ~rph · ~β

]
~β
)∣∣∣∣
ret

(2.70)

∇Φ =
q

4πεor2
(
λ2 ~rph − λ3

[
(r/c)β̇ · r̂ − ~rph · ~β

]
r̂
)∣∣∣∣
ret

(2.71)

Where β̇ is related to the acceleration and the velocity of the charge as
~a/c2 = β̇/c = v̇/c2. The time derivative term (2.70) dependents mainly
on the acceleration of the charge. This was to be expected since ~A is pro-
portional to the velocity of the charge. The second part of (2.70) depends
on the velocity and can be neglected at lower charge velocity. We use a
standard vector identity to collect various radiation terms together.
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A× (B × C) = B (A · C) − C (A ·B) (2.72)

r̂ × ( (r̂ − ~β) × β̇ ) = (r̂ − ~β) (r̂ · β̇) − β̇ (1− ~β · r̂ ) (2.73)

By doing so we arrive at the usual presentation of electric field from a
charge with arbitrary motion and acceleration:

Electric field E of an arbitrary moving/accelarating charge

E =
q

4πεor2

(
(1− β2) (r̂ − ~β)

(1− ~β · r̂ )3
+

r

c

r̂ × ( (r̂ − ~β) × β̇ )

(1− ~β · r̂ )3

)∣∣∣∣∣
ret
(2.74)

We can simplify this expression as before by using ~rph = r̂ − ~β which is
pointing along the direction of the line from the phantom location to the
point for which we calculate the field.

E =
q

4πεor2

(
(1− β2) ~rph

(r̂ · ~rph)3
+

r

c

r̂ × ( ~rph × β̇ )
(r̂ · ~rph)3

)∣∣∣∣∣
ret

(2.75)

Furthermore we can use the direction dependent shockwave factor λ =
1/(1− ~β · r̂ ) which can be interpreted as the ”compression” of the emitted
potential field in front of the charge due to its motion.

E =
q

4πεor2
λ3
(

(1− β2) ~rph +
r

c
r̂ × ( ~rph × β̇ )

)∣∣∣∣
ret

(2.76)

2.11 Derivation of the Liénard Wiechert B field

For the magnetic B field we need to take the curl∇× ~A of the magnetic vec-
tor potential. Careful evaluation shows up that the electric and magnetic
field are related to each other by.

B =
r̂ret
c2
× E (2.77)
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Which gives us for the magnetic field of an arbitrary moving and acceler-
ating charge:

Magnetic field B of an arbitrary moving/accelarating charge

B =
q/c

4πεor2

(
(1− β2) r̂ × (r̂ − ~β)

(1− ~β · r̂ )3
+

r

c

r̂ × (r̂ × ( (r̂ − ~β) × β̇ ))

(1− ~β · r̂ )3

)∣∣∣∣∣
ret

(2.78)

2.12 Point charge radiation fields from acceleration

The point charge radiation fields from acceleration in the z-direction (text
to be inserted)

Figure 2.7: Electric and Poynting field of a uniformly accelerating charge

In figure (2.7) It has a direction acceleration opposite to the field which
would cause the charge to accelerate. The charge opposes a change in
speed. It is this effect which causes self-induction. Multiple charges close
together will generate electric radiation fields contrary to the accelerating
electric field. The ensemble is harder to accelerate when the charges are
closer together and easier when they are further apart.
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Eacc =
q

4πε0
az
c2

{
xz

r3
,

yz

r3
, − x2 + y2

r3

}
(2.79)

Bacc =
q

4πε0
az
c3

{
− y

r2
,

x

r2
, 0

}
(2.80)

~Pacc =
q2

16π2ε0

a2
z

c3

{
x2 + y2

r5
x,

x2 + y2

r5
y,

x2 + y2

r5
z

}
(2.81)


