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9.1 The Klein Gordon Equation

We started in this book with the classical wave equation which was visu-
alized in figure ??. the classical wave equation governs the propagation of
massless fields at the speed of light. The addition of a mass term will now
lead us to discuss the Klein Gordon equation for fields which have mass
and which can propagate with any speed between plus c and minus c.

Figure 9.1: Mechanical equivalent of the (real) klein-Gordon equation

The mass term can be interpreted in the mechanical equivalent by springs
which oppose the perturbation ψ of the weights in the vertical direction.

Klein Gordon equation:
∂2ψ

∂t2
− c2

∂2ψ

∂x2
= −m

2c4

~2
ψ (9.1)

We first consider the case in which there is only a single set of m2 springs
at the end of the horizontal chain. Waves propagating at c towards the
end will be reflected back negatively in the opposite direction. This be-
comes, with a continuous distribution of m2 springs, a recursive process of
reflections and reflections of reflections.

From equation (9.1) we can, in comparison with the d’Alembertian of the
electromagnetic potentials, interpret the field as it’s own (negative) source
expressing the opposition of the vertical springs against the perturbation.
To find an expression for the propagation we need to reverse (9.1) which
tracks back to the source to obtain the Green’s function which expresses
the propagation resulting from a delta pulse like perturbation of the field.
The equation for Green’s function D(t, r) is:
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(� +m2) D(t, r) = δ(t, r) (9.2)

Where we have used c = 1 and ~ = 1 for simplicity and the d’Alembertian
in 4d space-time is defined by.

� =
∂2ψ

∂t2
− c2

∂2ψ

∂x2
− c2

∂2ψ

∂y2
− c2

∂2ψ

∂z2
(9.3)

Expressing this in momentum space instead of position space gives us via
the Fourier transform:

(−p2 +m2) D(E, p) = 1 ⇒ D(E, p) =
−1

p2 −m2
(9.4)

Where p2 is a shorthand notation of (E2−p2
x−p2

y−p2
z). This expression has

two poles at p2−m2 which is a result of the infinite plane wave character of
the momentum space representation. The infinity at the pole only occurs
after infinite propagation time when all contributions from infinitely far
away have arrived. We can extract the recursive behavior of the propagator
by expressing it as a geometric series.

1
p2 −m2

=
1
p2

+
m2

p4
+
m4

p6
+
m6

p8
+ .... (9.5)

Where the terms at the right hand side do not contain the pole anymore.
We see that the first term is just the massless propagator. The second term
can be interpreted as the first reflection/re-emission which is proportional
to m2, the third term represents the second reflection et-ceterea. When
we Fourier transform the re-emission series back to positions space we get
Green’s function as a series in the d’Alembertian:

D(t, r) = �−1 −m2 �−2 +m4 �−3 −m6 �−4 + .... (9.6)

All components of this series propagate on the lightcone. However, we
now do have propagation inside the lightcone also due to the reflections
in contrast with the massless propagator. This means that Klein Gordon
particles with mass can move at any speed between plus c and minus c.
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We can see from (9.6) that there is no propagation outside the light cone,
preserving special relativity and causality. We have circumvented the un-
physical infinity at the p2 = m2 poles with the use of the reflection series.

9.2 Relativistic de Broglie matter waves

The Klein Gordon equation leads us to the relativistic matter waves first
proposed by Louis de Broglie which are fundamental in the sense that
they govern the basic behavior of all types of matter observed sofar. Of
elementary importance are the relations which link energy and momentum
with the frequencies of the matter waves in time (9.7) and space (9.8)

These relations are at the origin not only of quantum mechanics, but also
of special relativity. They, like the classical wave equation, lead to the
rules of special relativity. The Klein Gordon equation and its descendants
could be said to impose special relativity on nature, rather than merely
being Lorentz invariant.

E = hf (9.7)

The Energy is found to be proportional to the phase change rate in time
given by the frequency f and Planck’s constant h. This expression also
implies the momentum / wavelength relation (9.8) if we assume special
relativity. The momentum p is found to dependent on the phase change
rate over space resulting in the deBrogle matter wavelength λ:

p = h/λ (9.8)

The deBroglie wave-length is related one-to-one to the relativistic effect of
non - simultaneity: The particle at rest has the same phase throughout its
wave function. In regards with figure(9.6) this corresponds to a horizontal
line of weights moving up and down.

Non-simultaneity as observed from other reference frames results in a dif-
ferent phase at different locations. The resulting phase shift over space
becomes the de Broglie wave length. The deBroglie wave-length is a rela-
tivistic effect even though it does occurs at speeds of centimeters or less per
second. p = h/λ is not a separate law but is already implied by E = hf .



9.3 The wave packet at rest and moving 5

On the other hand, if we want the Klein Gordon equation to impose the
laws of special relativity then it should naturally produce wave packages
moving with the speed corresponding to the de Broglie wave length. Fur-
thermore, it should produce the well known phase speed of c2/v > c. And
indeed, it does so, and it does so as well for our mechanical spring/mass
model.

9.3 The wave packet at rest and moving

The wave function of a particle in its rest frame is represented by (9.9),
where Qx is a localized, real valued, Quantum wave packet. E0 is the
energy belonging to its rest mass m0. The particle viewed from its rest-
frame has an equal (complex) phase over all of space: This means that a
particle at rest has a deBroglie wavelength λ of ∞.

Particle at rest: Ψ = Qx e
−i2πft = Qx e

−iE0t/~ (9.9)

The Function of the wave-packet Qx is to localize the particle. For the
next few sections we will work with pure plane waves. We will include Q
again at the section which discusses the group speed of the deBroglie wave.

Figure 9.2: The de Broglie wave as a result of non-simultaneity
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The relativistic time shift seen from a reference frame other than the rest
frame produces different phase shifts in eiE0t/~ at different x locations
which then manifest them self as the deBroglie wave length, a complex
phase changing over space with a wave length λ.

Moving: Ψ = e−i2πft + i2πx/λ = e −iEt/~ + ipx/~ (9.10)

We can simply derive the formula above from (9.9) if we substitute t with
t’ from the Lorentz transformation:

t′ = γ
(
t− vx

c2

)
(9.11)

e−E0t/~ = e−im0c
2t/~ ⇒ e−im0c

2 γ
(
t− vx/c2

)
/~ =

= e−iγm0c
2t/~ + iγm0vx/~ = e −iEt/~ + ipx/~ (9.12)

Figure 9.3: de Broglie waves of a particle at rest (left) and moving (right)

With the relativistic momentum p = γm0v and the relativistic energy
E = γm0c

2 we get our expression (9.10) for the moving particle. We have
derived the wave behavior of momentum from the wave behavior of energy.
Figure (9.2) shows a particle at rest with λ =∞ (localized by the function
Q) and a particle moving downwards with an indication of the time bands
in the rest frame of the particle
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9.4 de Broglie waves as particles and antiparticles

The relativistic de Broglie plane waves are the eigen functions of the Klein
Gordon equation which is easy to show by inserting the solutions in the
Klein Gordon equation. We obtain the classical energy momentum rela-
tion.

E2 − c2p2 = m2c4 (9.13)

There are however two different solutions which we’ll associate with par-
ticles and antiparticles.

particles : e −iEt/~ + ipx/~ (9.14)

antiparticles : e +iEt/~ + ipx/~ (9.15)

Note that our solutions are complex and that we want to give a physical
meaning to the complex pair. In general this kind of relationship is inter-
preted as a position/momentum relationship whereby the position trails
the momentum by 90 degrees. In the anti-particle case this relation is
reversed. Alternatively, one can interpret the complex pair as the two co-
ordinates of the plane of rotation whereby the rotation can be both left
and right handed.

In any case, one does somehow expect a direction in space to be associated
with the oscillating variation. This however isn’t the case with the scalar
Klein Gordon particles. Furthermore, only a single (phase) parameter is
not enough to specify a direction.

Existing scalar Klein Gordon particles are all composite particles where
the spins are opposite and cancel. Thus, the spins define a direction in
space for the individual particles but not do so anymore for the composite
spin zero Klein Gordon particles.
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9.5 The relativistic rotation of the wave front

A remarkable amount of physics can be extracted from the simple rule that
the wave front is always at right angles with the physical velocity, regardless
of the reference frame. This gives us another means of determining the
material speed.

Figure 9.4: A faster particle chasing a slower one

The left half of image (9.4) shows a fast particle chasing a slower particle
at the right with equal mass. The fast particle has a shorter de Broglie
wavelength. The phase speed of the faster particle is slower ( as given by
c2/v ) compared to the slower particle.

In image (9.5) we see the same scene but now from a reference frame
moving upwards. The extra motion has a larger influence on the slower
moving particle. Its relative motion changes downwards more than the
faster particle. As one can see, the combination of Special Relativity and
Quantum Mechanics makes sure that the wavefronts are exactly at right
angles with the physical speed, exactly as one would intuitively expect.

It is only Special Relativity which can rotate wavefronts, and it does so
for both light and matter waves. A Galilean transformation keeps the
wavefronts always directed in the same direction! The mechanism through
which Special Relativity manages this is again via the non-simultaneity of
time.
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The time in the moving frame has progressed further in the upper time
bands and less in the lower. Horizontally the phase has shifted further in
the upper and less in the lower bands. The result is that the wavefront
becomes skewed. The wavefront of the slower particle which has a higher
phase speed (c2/v) becomes more skewed and rotates further. Just as it
should be to keep the wavefront at right angles with physical speed.

Figure 9.5: The scene in a different reference frame with a vertical speed

So it’s Special Relativity which rotates the wavefront while it is the Quan-
tum Mechanical de Broglie wave with its phase speed of c2/v which rotates
the wavefront of a slow particle more than that of a faster one. This mech-
anism works equally well for light waves which represent the limit where:
group-speed = phase-velocity = c.

9.6 Lorentz contraction and Time dilation

The de Broglie wave length is inversely proportional to the speed and
becomes infinite in the rest frame. Infinite simply means that the phase
is equal everywhere in the rest frame. A small change in phase could be
interpreted as a shift of the sinusoidal wave function over a distance which
is infinite in the limit. The ”speed” with which the phase shifts in the rest
frame (= fλ) would thus be ”infinite”. The phase speed is the inverse of
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the material speed v. The phase speed only equals the material speed in
the limit of c:

de Broglie phase speed: vψ = fλ =
E

p
=

c2

v
(9.16)

This result, logical after we have seen the derivation of p = h/λ from
E = hf does of course not contradict special relativity. We want to see
what happens at the material speed v and start with:

Moving wave packet: Q(x,t) e+ ipx/~ e−iEt/~ (9.17)

Which we have split into three parts. First we want to express the localized
packet Q more explicitly as a something which moves with a speed v and
hence is Lorentz contracted by a corresponding gamma. We do so by
defining:

Q(x,t) = Q(γ(x− vt)) (9.18)

Now we want to do the same for the second part of equation (9.17) which
describes the phase change over space. We want to make it move with
a physical speed v so we can view Q and the second term as a single
combination which moves along with speed v. We already have the gamma
factor included since:

eipx/~ = eiγm0vx/~ (9.19)

(See equation (9.12), To make it physically moving at speed v we need to
lend some from the third term to obtain the −vt part of the factor (x−vt).
To do so we split the exponent of the third term as follows:

−iE t/~ = − iE t/~
(
v2

c2

)
− iE t/~

(
1− v2

c2

)
(9.20)

The first half we move to the space phase so we get:

eipx/~ e−iEt/~ ⇒ eim0vγ(x− vt)/~ e− im0c
2t/(~γ) (9.21)

With this we can write the re-arranged expression (9.17) for the moving
wave packet:
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Q(γ(x− vt)) eip0γ(x− vt)/~ e− iE0t/(~γ) =

= W (γ(x− vt)) e− iE0t/(~γ) (9.22)

Where W is the combined Lorentz contracted function moving with speed
v. The phase variation with time represented by the last factor is now to
be understood as taken over the actual trajectory of the wave packet. It
correctly corresponds with the time dilation, which is predicted by special
relativity to be a factor γ slower as for the particle at rest.

Both the Lorentz contraction (with factor gamma) and the phase variation
with x are the result of the non-simultaneity of Special Relativity. To see
this we can imagine that we instantaneously ”freeze” a bypassing traveler.
Walking around him we can see him ”hanging in the air”, indeed being
contracted in the direction in he was moving.

The traveler however will complain that his front was stopped first, before
his back was frozen, and argues that this is the reason of his compressed
state. The same is true for the phase. The phase of the traveler does
not vary with x in his rest frame. However since (as seen from his rest
frame) we froze his front first and his back later. We end up with the
phase variation over x given by the second part of equation (9.22)

9.7 Lorentz contraction from the Klein Gordon eq.

We want to find a localized wave packet Q for a free particle which is
stable in time, that is, doesn’t spread (disperses) or otherwise changes in
time. We’ll solve this first for the simplest relativistic equation, the Klein-
Gordon equation. Furthes on we will extend this to the Dirac and Proca
equations.

E2 − p2c2 − (m0c
2)2 = 0 (9.23)

The classical relation for the relativistic particle above is the base of the
Klein Gordon equation which yields the Schrödinger equation in the non-
relativistic limit.

Klein Gordon: ~2∂
2ψ

∂t2
− c2~2∂

2Ψ
∂x2

+ (m0c
2)2ψ = 0 (9.24)
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We separate Ψ as below where Q is a localized Quantum wave packet which
has a constant energy E and moves with a fixed momentum p. The E and
p values here correspond to the classical center values.

ψ ≡ Qxt (ei2πx/λ) (e−i2πft) ≡ Qxt e
ipx/~−iEt/~ (9.25)

Note that we have assumed that the spread in p can be neglected. The
spread in p becomes higher if the wave-packet becomes more localized.
The second order derivative in time becomes written out:

∂2ψ

∂t2
= − 1

~2

{
E2 +

2i~E
Q

∂Q

∂t
− ~2

Q

∂2Q

∂t2

}
ψ (9.26)

Since we want Q to be a constant localized function which shifts along
with physical speed v we can express the derivatives in time as derivatives
in space:

Q(γ(x− vt)) gives:
∂Q

∂t
= −v∂Q

∂x
,

∂2Q

∂t2
= v2∂

2Q

∂x2
(9.27)

Which is valid for any non-changing wave packet Q moving at a constant
velocity v. We will use these identities to make our equation time inde-
pendent and write for the partial derivatives:

∂2ψ

∂t2
= − 1

~2

{
E2 − 2i~Ev

Q

∂Q

∂x
− ~2v2

Q

∂2Q

∂x2

}
ψ (9.28)

∂2ψ

∂x2
= − 1

~2

{
p2
xc

2 − 2i~pxc2

Q

∂Q

∂x
− ~2c2

Q

∂2Q

∂x2

}
ψ (9.29)

∂2

∂y2
ψ = − 1

~2

{
− ~2c2

Q

∂2Q

∂y2

}
ψ (9.30)

∂2

∂z2
ψ = − 1

~2

{
− ~2c2

Q

∂2Q

∂z2

}
ψ (9.31)

We then insert these terms in the Klein Gordon equation. The first order
derivative terms cancel each other since Ev = pc2 = mc2v. The remaining
terms become:

E2 − p2
xc

2 − p2
yc

2 − p2
zc

2 = m2c4 − ~2c2

Q

[(
1− v2

c2

)
∂2Q

∂x2
+
∂2Q

∂y2
+
∂2Q

∂z2

]
(9.32)



9.8 Sub-luminal propagation of the field 13

We then insert these terms in the Klein Gordon equation. The first order
derivative terms cancel each other since Ev = pc2 = mc2v. The remaining
terms become:

E2 − c2p2
x = m2c4 − ~2c2

Q

[(
1− v2

c2

)
∂2Q

∂x2
+
∂2Q

∂y2
+
∂2Q

∂z2

]
(9.33)

That is, the moving packet Q is compressed by a factor γ in the x direction.
The second order derivatives are higher by a factor γ2 which is canceled
by the factor in final formula.

The crucial step is replacing the derivatives in time by the derivatives
in space for a stable solution shifting along with speed v. This is in
essence what causes Lorentz contraction. We see that the Lorentz con-
tracted Laplacian has to be zero in order to retrieve the classical relativistic
particle equation.

9.8 Sub-luminal propagation of the field

The most far reaching consequence of the introduction of the mass term
in the Klein Gordon equation is that it allows fields to propagate at other
speeds as the speed of light. All speeds are possible within a range of.

−c < v < + c (9.34)

Excluding c itself. We will study the wave-based mechanism of motion with
the help of the momentum domain, see figure 9.6. It shows a momentum
with a certain spread ∆p around a central momentum.

Once we know the momentum distribution at a certain time, then we can
determine the progression in time because the frequency component of a
certain momentum has to be either ±ωp, where ωp =

√
(pc)2 + (mc2)2/~

The (free field) solutions for particles have −ωp for particles and +ωp
for anti-particles. In figure 9.6 we can follow the progression in time of
the momentum distribution. The ∆p of the momentum distribution stays
the same but the phase changes according to the ωp of the particular
momentum.
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The result is that a phase change rate builds up along the momentum-axis.

Figure 9.6: Variation in energy versus variation in momentum.

Such a phase change over the momentum-axis corresponds with a transla-
tion in the position domain, see figure 9.7 which shows both position and
momentum domains.

Since the phase change rate increases linearly with time, we see a corre-
sponding linear increase in the translation of the wave-packet: It has a
constant velocity. Both figures show the real (blue) and imaginary (green)
values of the field.

The velocity of the packet is proportional to the phase change rate which
is in first order approximation given by the slope of the energy curve.

v =
∂E

∂p
=

pc2√
(pc)2 + (mc2)2

=
pc2

E
(9.35)

Which we can check via relativistic classical mechanics.

pc2

E
=

γ mv c2

γ mc2
= v (9.36)
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Figure 9.7: Moving Gaussian Klein Gordon wave-packet

Here we have retrieved the canonical equation, from classical mechanics,
for deriving the velocity from the Hamiltonian, which was known long
before relativistic quantum mechanics did explain its geometric origin.

v =
∂H

∂p
(9.37)

The slope of the hyperbolic energy curve is not constant, except for the
case where m=0. In the massless case there is only one speed possible.

v =
∂E

∂p
=

∂

∂p

{
pc
}

= c (9.38)

The phase change rate is uniform along the momentum-axis in this case,
so the whole field in position space is translated with a uniform value and
the form of the wave-packet does not change in time.

In the case of a particle with mass this is not the case. The result is that
the shape of the field in position space changes in time.
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9.9 Spreading of the free field wave packet

We discussed how the speed of the wave packet is given by the derivative
of the Hamiltonian against the momentum.

v =
∂H

∂p
=

∂E

∂p
=

pc2√
(pc)2 + (mc2)2

=
pc2

E
(9.39)

The wave-packet would not spread in the case of a constant v such as in
the case of a massless particle which is represented with a wave-function
which moves unchanged at the speed of light.

However, for a localized field p will vary and E =
√

(pc)2 + (mc2)2 means
that there will be a range of speeds which means in general that a wave-
packet will spread. The variation is approximately given by the first deriva-
tive.

∆v ≈ ∂2E

∂ p2
∆p (9.40)

Given that Heisenberg’s uncertainty relation ∆x∆p ≥ ~/2 can be derived
by Fourier analysis, which in the case of a Gaussian shaped wave-function
becomes ∆x∆p = ~/2, the minimum value, we can write.

∆v ≈ ∂2E

∂ p2

~
2∆x

(9.41)

Where ∆x is the width. One can reason that the overall shape of a wave-
function changes faster if ∆x is smaller for a given speed-variation ∆v. We
can define a dimension-less quantity shape, which has derivative in time
which gives us an approximation of the relative spreading of the wave-
function in time.

∂

∂t

{
shape

}
≈ ∆v

∆x
≈ ∂2E

∂ p2

~
2(∆x)2

(9.42)

Working out the second order derivative gives us.

∂2E

∂ p2
=

(mc2)2 c2(
(pc)2 + (mc2)2

)3/2 =
E2
o c

2

E3
=

c2

Eγ2
(9.43)
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Which leads us to our final expression here.

∂

∂t

{
shape

}
≈ ~ c2

2E(γ∆x)2
(9.44)

If we remove the gamma’s then we get the expression for the rest frame.

∂

∂t

{
shape

}
≈ ~ c2

2mc2(∆x)2
(9.45)

We can summarize the results as:

• The spreading of the wave-function is inversely proportional to the
frequency (the phase change rate in time) of the particle, Higher
mass particles spread slower.

• The spreading of the wave-function is proportional to the square of
the momentum spread. The smaller the initial volume in which the
initial wave-function was contained the faster it spreads and keeps
spreading.

Figure 9.8: Spreading Gaussian Klein Gordon wave-packet
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From figure. 9.8 we can read the mathematical mechanism which leads to
spreading. The variation ∆p of the momentum stays the same over time.
It is the frequency dependency on the momentum E =

√
(pc)2 + (mc2)2

which leads to a phase change over p.

The phase change is opposite at both sides of the center-momentum. These
phase-changes lead to (opposite) translations of the wave-function in po-
sition space, this is the spreading. The value ∆x in our expression stays
constant because ∆p stays constant, it is the initial ∆x corresponding to
the pure Gaussian at t=0.

Some actual spreading rate numbers

We can work out a few numerical example to get an idea of the spreading
rates. From the wide range of wavelength sizes, we can classify the Comp-
ton radius as the low end, although there is in principle no real barrier to
go to even smaller sized wave-packets.

If we replace ∆x with twice the Compton radius rc = ~/mc then, assuming
that our proximation is still reasonably valid in this range.

∂

∂t

{
shape

}
≈ c

8 rc
(9.46)

If we recall the rest-frequency of the particle: fo = c/(2π rc) (in case of the
electron fo = 1.2355899729 1020 Hz ), then we see that spreading speed
approaches the speed of light in this range. The spread in momentum is
so large that it includes velocities from close to −c up to +c.

To confine an electron-field to a Compton radius-like volume one needs a
positive charge of 137e, The inner-most electrons of heavy elements come
close to being confined into such a small area. The Compton radius for
electrons is 3.861592696 10−13 meter.

More commonly, electrons freed from a bound state, take off with a much
larger radius, comparable to the Bohr radius. (5.291772131 10−11 meter)
This means that the spreading speed is much lower, v < 0.01c, but still
quite high.
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The size of the wave-packet will grow fast. For instance, the famous single
electron interference experiment of Akira Tomomura, which demonstrated
the single-electron build-up of an interference pattern, shows that the elec-
tron fields in the experiment must at least be several micrometers wide.
This is a factor 100,000 wider as in the confinement of the Bohr radius.

Figure 9.9: Akira Tomomura’s experiment, www.hitachi.com


