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3.1 Signal propagation: The bouncing photon clock

The classical wave equation tells us that the propagation is on the light
cone, and the propagation speed is c. With this as a starting point we will
show that we should expect that physical processes which move progress
slower as they do when at rest. In this chapter we will consider Time
dilation from a single reference point of view before we will handle the
emergence of non-simultaneity from the classical wave equation in the next
chapter.

Figure 3.1: Bouncing photon clock, at rest (left), moving (right)

One of the simplest clocks one can conceive is that of a single photon
bouncing between two mirrors. This elementary timing device also sym-
bolizes the maximum rate of how fast two objects will interact, or more
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general, how fast physical processes do progress.

The clock-rate becomes higher if the distance between the two mirrors
decreases, and slower if the distance increases. The interaction between
objects proceeds faster or slower depending on the distance between them.

Figure 3.1 shows vertically and horizontally bouncing photons in the rest-
frame as well as in a moving frame. We will see that the analysing the clock
just amounts to a review of the classical Michelson and Morley experiment.

For a clock with the photon bouncing vertical (orthogonal to the velocity)
we see that the ”tick” and the ”tock” are equal in duration. The photon
moves on the diagonals with the speed of light c while the mirrors move
horizontally with speed v. The vertical component of the speed which
determines the duration of the ticks is thus

√
c2 − v2 and the duration of

the ticks for a distance L between the mirrors becomes.

Ttick = Ttock =
L√

c2 − v2
= γ

L

c
(3.1)

In the case, where the photon bounces horizontal we get an asymmetry.
The photon moving along with the mirrors in the same direction takes
more time to go from one mirror to the other as the photon moving in the
opposite direction as the mirrors. The times Ttick and Ttock are different.

Ttick + Ttock =
(L/γ)
c− v

+
(L/γ)
c+ v

= 2
(L/γ)
c2 − v2

= 2 γ
L

c
(3.2)

However, in both cases the total time for the tick plus the tock is 2γL/c,
compared with a total time of 2L/c for a clock at rest. In both cases the
clock runs slower by a factor γ. The factor γ which determines the time
dilation.

Closer observation of figure 3.1 shows that the wave length of light changes
when we look at it from the moving frame. The lower right image shows the
Doppler effect on the photons bouncing of the mirrors. The wave length
becomes shorter if a photon is reflected by the mirror moving towards it,
while the wavelength becomes longer if it’s reflected by the other mirror.
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Even more interesting are the diagonal wavefronts in the top right image
of figure 3.1. The wave fronts have rotated in such a way that they point
in the direction of the propagation, as they should do.

These transformations observed by going from one reference frame to an-
other go beyond simple Lorentz contraction and are of course the result
of the change in simultaneity. We can read of the change in simultaneity
most easily from the top right image with the diagonal wavefronts:

The time changes in the horizontal direction (the zones of equal time are
vertical bands). Looking at the wavefront we can see that time is further
advanced at the left side (∆t is positive), because that part of the wavefront
has propagated closer towards the opposite mirror. The time at the right
side is trailing (∆t is negative), shown by the trailing wavefront. This skew
in the propagation of the wavefront is what causes it to rotate.

Non-simultaneity is also what causes the Doppler effects in the bottom
right image. We will explain how non-simultaneity occurs physically (and
how it can be predicted from classical physics) in the next chapter which
is devoted specificality to non-simultaneity.

3.2 Twin Brothers in a single reference frame.

A good way to physically understand the seemingly paradoxical aspects of
time dilation is to first review the twin ”paradox” it in a single reference
frame, without switching from one reference frame to another we avoid the
extra complexities associated with non-simultaneity.

Figure 3.2 shows the cases we will calculate here. We will see that in both
cases it is the traveling twin brother who ages less. The stripes on the lines
are an indication of the clock ticks.

Aging goes fastest in this reference frame for an object at rest and ev-
erything what moves progresses slower. The faster it moves, the slower it
progresses. Now look at the two cases of the Twin ”paradox”

The left side image shows twin brother B traveling That is, he moves away
from his brother A for some time and changes speed at half the travel time
(half of his time) to turn back to his twin brother A. It’s evidently that
twin brother B ages less, OK, but now the other way around
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The right side image starts the same initially but now it’s twin brother A
who is traveling. His distance to B is increasing first but then, after half
of (his) travel time, he changes speed in order to meet up with his twin
brother B at the end of the voyage.

To do so he has to go after twin brother A at a higher speed in order
to catch up with him at the end of the voyage. At this point they can
compare their ages.

Figure 3.2: The twin brothers ”paradox” in a fixed reference frame

It turns out that the situation is reversed now. It’s the first of the twins
who has aged less. (by exactly the same amount). This is because of the
higher speed the first twin needs to travel to overtake his brother. Aging
slows down so much (in this shorter period) that at the end he has aged
less as his brother who continued to travel always at the same speed.

Now look at case 2 from the eyes of the second brother: He first sees his
brother getting farther and farther away and then, somewhere halfway, he
sees his brother changing speed to get back to him.

The second brother may presume that he’s at rest all the time and that it’s
the first twin brother who went on a voyage and came back, and, therefore
the first brother should have aged less, which is indeed exactly what they
find out!
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We can use the standard formula for relativistic velocity ”addition” to
determine the speed which twin brother A needs to catch up.

v(a+b) =
va + vb

1 + vavb/c2
(3.3)

Twin brother B, moving himself with v sees, in his reference frame, that
twin brother A is catching up with him with the same speed v. The catch
up speed as seen from our frame is therefor.

v2 =
2v

1 + v2/c2
(3.4)

The time dilation at this velocity v2 is determined by γ2 which is.

γ2 =
1√

1− v2
2/c

2
=

1 + v2/c2

1− v2/c2
(3.5)

The time, in our frame, needed for twin brother A to catch up is given by.

∆T2 =
L

v2
=

T

2

(
1 +

v2

c2

)
(3.6)

Where T is the total time. Consequently the first half of twin brother A’s
voyage, took a time of ∆T1 = T − ∆T2 in our reference frame, where he
was at rest.

∆T1 = T −∆T2 =
T

2

(
1− v2

c2

)
(3.7)

The first and second half should take equal amounts of proper time for
twin brother A. If we apply the time dilation at a speed v2 to determine
the proper time ∆T ′2 for twin brother A then we obtain indeed.

∆T ′2 =
T2

γ2
=

T

2

(
1− v2

c2

)
(3.8)

The proper times spend at the first and second half is equal, ∆T1 = ∆T ′2
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The total proper time for twin brother A is just the sum of the two.

TA = ∆T1 + ∆T ′2 = T

(
1− v2

c2

)
=

T

γ2
(3.9)

So we see that the time dilation for twin brother A is given by γ2 versus
γ for twin brother B who was moving at a constant speed. The traveling
twin brother A has aged less by a factor γ compared with his twin brother
who did not change velocity.

Time passed for A: TA = T
γ2 = T

(
1− v2

c2

)
Time passed for B: TB = T

γ = T

√
1− v2

c2

(3.10)

We see that we can deduce the slower aging of the traveling twin brother in
both cases from the on-the-lightcone propagation associated with the 1+3d
classical wave equation. We have not discussed non-simultaneity yet. The
relativistic effect of non simultaneity, which can also be deduced from the
classical wave equation, will make the two different cases discussed here
100% symmetric.

Until sofar we’ve only discussed the wave equation without mass term
which covers the important class of electromagnetic interactions. In the
following sections we will have an introductory discussion of the relativistic
effect of time dilation in matter wave functions for particles with mass.

3.3 Nature’s own clock: The de Broglie frequency

Nature has it’s own perfect clocks in the de Broglie frequencies of objects
with mass. The frequency in the rest frame is in principle what determines
the invariant mass of particles. It is this frequency which determines how a
particle propagates. In a moving reference frame this internal clock reacts
in the same way as our bouncing photon clock.

Figure 3.3 shows a Minkowski diagram with de Broglie waves. Looking at
the moving frame at the right along the trajectory of the particle (over the
t’-axis) we see that the frequency reduces (by a factor γ) as defined by the
time dilation.
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Looking at the same image but now along the vertical axis (the t-axis) then
we see that the frequency increases by a factor γ instead. This of course
represents the energy dependence on the velocity E = γmc. It is the effect
of non-simultaneity, which causes the x’-axis to rate, that is responsible
for this reversed effect.

Figure 3.3: de Broglie waves of a particle at rest (left) and moving (right)

We have as yet still no descriptive model which tells us exactly what kind of
microscopic movement causes the de Broglie frequency, but the fact that
it transforms just as our bouncing photon clock strongly suggest that a
motion through real space is involved here, even though one often sees the
term ”internal space” used. The latter term merely describes our ignorance
about what is really going on.

Part of our ignorance stems from the fact that the effect of Time dilation is
independent of the direction of the internal motion relative to the direction
of motion of the object itself. We can at this stage not tell if we deal with
an internal vibration or with an internal rotation or something else.

We will see later on that the Dirac equation strongly suggest that we have
to do with some sort of rotation. In the next section however we will
content ourself with the simplest model, that of an internal vibration, to
handle the Wave equation for particles with mass.
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3.4 The Wave equation for particles with mass

Our in depth treatment of massive particles with a de Broglie frequency
comes in chapters on the Klein Gordon equation. This equation can be
viewed as the classical Wave equation with an extra mass term.

Figure 3.4: Wave equation for de Broglie waves

The mass term can be interpreted for instance in our mechanical equivalent
by springs which oppose the perturbation ψ of the weights in the vertical
direction. The constant m2c2/~2 represents the strength of the vertical
springs. The minus sign at the right hand side indicates that the force is
opposing the displacement.

Klein Gordon equation:
∂2ψ

∂t2
− c2

∂2ψ

∂x2
= −

(
m2c4

~2

)
ψ (3.11)

The real eigenfunctions of this differential equation are given by.

ψ = sin
(
− E

~ t+ p
~ x
)
, ψ = cos

(
− E

~ t+ p
~ x
)

(3.12)

Inserting the eigenfunctions into equation (3.11) gives us the classical
energy- momentum relation.

−
(
E2 − p2c2 −m2c4

) ψ

~2
= 0 (3.13)
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Where the classical relativistic energy E and momentum p are given by.

E = γmc2, p = γmv (3.14)

The frequency in time is given by f = E/h. If there is no second derivative
in x, which is only physically possible if ψ is the same everywhere, then E
is given by the rest-mass energy f = mc2/h and the particle is at rest.

To check the Time dilation of the particle we look at the eigenfrequency
of the particle along its trajectory which is given by x = vt, substituting
this in the eigenfunction gives us.

ψ = sin
(
−
(
E
~ −

vp
~
)
t
)

= sin
(
− γm

~
(
c2 − v2

)
t
)

= sin
(
− mc2

γ~ t
) (3.15)

Which shows that the frequency of the moving particle along its trajectory
becomes lower by a factor γ as it should according to the time dilation.

f =
mc2

γ h
(3.16)

This is the self oscillatory frequency of the particle. The eigenfunctions as
defined in (3.12) can be considered as wave functions moving with velocity
v plus this self oscillation. For every arbitrary shaped wave function ϕ
which shifts along with a constant velocity v the following relation holds.

∂ϕ

∂t
= − v ∂ϕ

∂x
(3.17)

This relations should hold if we remove the self oscillation from the eigen-
function.

ϕ = sin
(
−
(
E
~ −

mc2

γ~

)
t+ p

~x
)

= sin
(
− γm

~
(
v2t− vx

) ) (3.18)

Which indeed describes a function shifting along with v according to (3.17)



3.5 Decomposition to lightcone propagators 11

3.5 Decomposition to lightcone propagators

We derived the time dilation from our ”bouncing photon clock” which, in
the specific case of 3 spatial dimensions, is governed by a propagator which
propagates uniquely on the lightcone.

The propagator for massive particles does, obviously, not propagate on the
lightcone, because a massive particle can have any speed between 0 and c.
We can however decompose the propagator into a series of pure lightcone
propagators. Defining � as the 1 + 3d dimensional d’Alembertian.

� =
(
∂2ψ

∂t2
− c2

∂2ψ

∂x2
− c2

∂2ψ

∂y2
− c2

∂2ψ

∂z2

)
(3.19)

and simplifying the notation a bit by using natural units, ~ = c = 1, we
can express the Klein Gordon equation as.

�ψ = −m2ψ (3.20)

Which shows that we can consider the term −m2ψ, representing the field
itself, as a source. The field which originates from this term opposes the
existing field, just like the vertical strings oppose the displacement of the
masses in figure 3.4

To obtain the propagator of the wave equation for particles with mass we
need to invert the operator.(

� +m2
)
ψ = δ(t, x, y, x) (3.21)

The field ψ is the result of the delta function perturbation. We are looking
for the inverse operator which acts on the delta function to give the field
ψ. This inverse operator is given by.

(
� +m2

)−1
= �−1 − m2 �−2 + m4 �−3 − m6 �−4 + .... (3.22)
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The first term �−1 at the right is the same as in the massless case (m = 0).
It represents the propagation from a delta source on the lightcone. The
second term is the first re-propagation. Each point of the field from the first
term acts itself as a new source with a negative sign, tending to suppress
the field. The third term is the second re-propagation, and so on.

All the re-propagating terms propagate on the lightcone. The sum, the
total propagator, is not on the lightcone anymore because each point act-
ing as a new source propagates in all directions including the directions
opposite to the original propagation.

Nevertheless we can derive the time dilation of special relativity from each
of the lightcone propagators, as well as from the sum of the time-ordered
products of lightcone propagators.

Fourier domain representation

We can, since the eigenfunctions are sinusoidal, look at the fourier domain
where the operators become algebraic expressions of the eigenvalues. The
Fourier transform of the d’Alembert operator is.

F{�} = − q2 = − E2 + p2
x + p2

y + p2
z (3.23)

The Fourier transform of the inverse operator (�+m2)−1 can be expressed
as the following series.

−
(
q2−m2

)−1
= −

(
1

(q2)
+

m2

(q2)2
+

m4

(q2)3
+

m6

(q2)4
+ .....

)
(3.24)

These terms correspond one to one with the terms of equation (3.22)


