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11.1 Klein Gordon equation with EM interaction

From classical electrodynamics we know that the total energy-momentum
in an electromagnetic field Aµ is given by.

Pµ =
{

1
c
E, ~P

}
=
{
γmc+

e

c
Φ, γm~v + e ~A

}
(11.1)

This total four-momentum is the sum of the inertial four-momentum due
to its mass plus the four-momentum due to the interaction with the elec-
tromagnetic 4-potential.

It is called the canonical momentum or the conjugate momentum because
it is conjugate to the position in quantum mechanics. That is, it is this
momentum which determines the phase change rates in space and time.

We did see that for the Klein Gordon field we can obtain the total, (local)
conjugate momentum from the field ψ as follows.

po =
i~
2

(
ψ∗

∂ψ

∂xo
− ∂ψ∗

∂xo
ψ

)
= −~

∂φ

∂xo
ψ∗ψ

pi = − i~
2

(
ψ∗

∂ψ

∂xi
− ∂ψ∗

∂xi
ψ

)
= ~

∂φ

∂xi
ψ∗ψ

(11.2)

The subtraction guarantees that only the phase change rates from φ(xµ)
of ψ = exp( iφ(xµ) + a(xµ) ) give a contribution to the momentum and
not the magnitude factor a(xµ). The above equations are the result from
symmetrically applying the derivative operator to both ψ and ψ∗.

To separate the electromagnetic interaction momentum from the total mo-
mentum we must replace the derivative operator with one which subtracts
the additional phase change rates from electromagnetic interaction. This
operator is given by the replacement.

∂µφ =⇒ ( ∂µ − ieAµ )φ (11.3)

Applying this operator instead of the normal derivative in the form for the
general operator,

O = ψ∗
←→̃
O ψ =

(
ψ∗Õ ψ + ψ Õ∗ψ∗

)
(11.4)
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then gives us the expressions for the inertial 4-momentum, the momentum
due to the mass only.

po =
i~
2

(
ψ∗

∂ψ

∂xo
− ∂ψ∗

∂xo
ψ

)
− e

c
Φ ψ∗ψ

pi = − i~
2

(
ψ∗

∂ψ

∂xi
− ∂ψ∗

∂xi
ψ

)
− eAi ψ∗ψ

(11.5)

The inertial momentum pµm transforms like a four vector while the 4-
potential Aµ does so as well. They represent four degrees of freedom per
point. On the other hand, The phase φ of the field ψ is a scalar, with
only one degree of freedom per point. This means that the total canonical
momentum is proportional to the gradient of the phase φ.

This restricts the degrees of freedom of the vector and thus put a restric-
tion on the sum of the inertial momentum pµ and the electromagnetic
interaction momentum pµe = eAµ ψ∗ψ.

This means that if Aµ changes in a way that would make the total canonical
momentum incompatible with the gradient from a scalar, then pµm has to
change as well to compensate for this. Thus a change in Aµ necessitates a
change of the inertial momentum. This change of inertial momentum is of
course the Lorentz force.

We can say that this restriction to a scalar phase imposes a U(1) symmetry
upon the Klein Gordon field, which is basically a field with an electric
charge (but without a spin and thus without a magnetic moment). The
group U(1) contains all values given by exp(iφ) where φ is real.

gauge covariant derivative

We can extend the free (interaction-less) Klein Gordon equation to the
interaction Klein Gordon equation as follows,

∂µ∂
µψ +

(
m2c2

~2

)
ψ = 0 =⇒ DµD

µψ +
(
m2c2

~2

)
ψ = 0 (11.6)

Where Dµ is known as the gauge covariant derivative, and defined as

Dµ = ∂µ − i
( e

~

)
Aµ, Dµ = ∂µ − i

( e
~

)
Aµ (11.7)
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11.2 Aharonov Bohm effect and experiments

The influence of the electromagnetic potential Aµ on the phase change
rates of the wave-function was well known in the early days of quantum
mechanics. The interacting Klein Gordon equation in the first section is
in fact Dirac’s starting point in his 1928 paper where he introduces his
famous Dirac equation.

Nevertheless, somehow the physical importance of the potentials, rather
then only the E and B fields, wasn’t wider spread to the broader commu-
nity. Illustrative is that two papers of Aharonov and Bohm in 1959 [?],
and 1961 [?], written three decades later, led to the association of their
names with the effect of Aµ on the phase change rates, which from then
on was known as the Aharonov-Bohm effect.

The magnetic Aharonov Bohm effect

Most of the interference experiments specifically showed the influence of
the magnetic vector potential on the phase change rates. Figure 11.1 shows
how an electron wave function passes a solenoid at two sides through areas
with opposing vector potentials. A change in the current through the
solenoid leads to a change in the phase difference which then causes a
change of the interference pattern on the detector plate.

Typically the diverging beams are bent back together simply with the help
of two negatively electrically charged plates (an electron bi-prism).

The first experiment in 1960 by R.G. Chambers actually used a tiny mag-
netic iron whisker instead of a solenoid. A year later Möllenstedt and
W.Bayh had developed a machine for the fabrication of very fine coils with
diameters from 5µm to 20µm which they used for experiments confirming
the effect.

In the context of the experiment it was important to show that the effect
didn’t follow from the magnetic field B but purely from the vector poten-
tial Ai. The effect should be there even if the magnetic field B is zero
everywhere along the path of the wave-function. This is what leads us to
the use of a solenoid because of it’s 1/r like potential outside the solenoid:

~Aext =
1
2r
µonR

2
aI
~φ =

1
2
µonR

2
aI
(
− y

r2
~x +

x

r2
~y
)

(11.8)
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The curl of this field yields zero, and thus B = 0 everywhere outside the
solenoid. Any dependency on the current I through the solenoid thus
demonstrates that Ai has a physical meaning in quantum mechanics. The
solenoids radius is noted by Ra and n is the number of windings. The delta
phase induced by the magnetic vector potential is given by.

∆φ =
e

~

∫
P

~A · d~x (11.9)

The electron does not accelerate because B = 0. Thus, there is no change
in the phase change rates due to the inertial momentum pim. The measured
∆φ is purely due to vector potential Ai.

Figure 11.1: Top and side view of the experiment

Stokes law tells us that we can also express the ∆φ as the integral over the
enclosed surface of the component of B normal to the surface.

∆φ =
e

~

∫∫
S

B · dS (11.10)
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This means that somewhere B must differ from zero. This is the case
inside the solenoid. The magnetic field B inside the long solenoid and the
total flux through the inside surface, the integral of B over the surface, is.

B =
1
2
µonI =⇒ ΦB = πr2B = πr2nI (11.11)

According to Stokes law, the line integral of a vector field along a closed
curve is equal to the surface integral of its curl over the surface enclosed
by the curve. Dividing the flux ΦB by the length 2πr of the curve gives
the vector potential Ai. Thus, at the inside (r<Ra) of the solenoid the
vector potential is expressed by.

~Aint =
1
2
µon rI~φ =

1
2
µonI

(
− y ~x + x ~y

)
(11.12)

The enclosed flux ΦB doesn’t increase anymore outside the solenoid corre-
sponding with expression (11.8)

The magnetic Aharonov-Bohm effect was further shown experimentally in
1986 by Tonomura et al.[?] in a beautiful experiment showing a quantized
phase shift between paths inside and outside a super conducting toroidal
ring. Webb et al.[?] in 1985 demonstrated Aharonov-Bohm oscillations in
ordinary, non-superconducting metallic rings. Bachtold et al. detected the
effect in 1999 in carbon nanotubes.

The electric Aharonov Bohm effect

In the electric Aharonov Bohm effect, it is the 0th component of Aµ, the
electric scalar potential which is responsible for the phase shift. The total
phase shift is an integral over t during the period over which the charge
stays in the potential field Φ.

∆φ = − e

~

∫
Φ dt (11.13)

An experiment by Oudenaarde et al. in 1998 [?], using a ring structure
interrupted by tunnel barriers, with a bias voltage V between the two
halves of the ring, demonstrated the electric Aharonov-Bohm phase shift.
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11.3 The scalar phase and Wilson Loops

We did see that the total (canonical) momentum of an electro magnetically
interacting Klein Gordon field is determined by the phase geometry of the
field.

Pµ =
i~c
2m

(
ψ∗∂µψ − ψ∂µψ∗

)
(11.14)

The total phase change rate is the sum of those from the inertial, mass
related, momentum pµ, plus the phase change rate due to the electromag-
netic interaction.

Pµ = pµ + eAµ (11.15)

A combination of multiple adjacent charges of equal sign will increase the
effective mass as well as the effective momentum at a given velocity.

The phase change rates are derived from the scalar phase φ. In general
a closed loop contour integral, tracking the total phase change over the
contour, is a multiple of 2π.∮

gradφ(~r ) · ds = 2πn (11.16)

In the context of the discussion here we will generally refer to such a
contour integral as a Wilson loop. In the infinitesimal limit of r→0 we
drop the n 6=0 cases around orbital angular momentum singularities and
define.

lim
r→0

1
2πr

∮
gradφ(~r ) · ds = 0 (11.17)

We do so assuming that the wave function ψ itself is always zero at singular
points, so a loop integral of ψ around the singularity will always yield 0.

Equation (11.17) demonstrates an inherent property of a scalar field. This
in contrast to loop integrals of vector fields which are unrestricted.
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∮
~pm · ds = unrestricted∮
e ~A · ds = unrestricted

(11.18)

This means that the identity Pµ = pµ + eAµ imposes severe restrictions
on the values that the vector fields can take. Changes in Aµ must be
compensated by changes in pµ in a way which respects the scalar nature.

Effectively this means that changes in Aµ necessarily result in acceleration.
This acceleration now corresponds to the Lorentz force:

~F =
∂pi

∂t
= e

(
E + ~v × B

)
(11.19)

The aim of this chapter is to show in considerable detail that the Lorentz
force is the result of the interacting Klein Gordon equation which describes
a particle without magnetic moment (spin).

In a four dimensional space-time we can distinguish between a total of six
surfaces in which we can define elemetary Wilson loops. See figure 11.2.

Figure 11.2: Space like and Time like Wilson loops
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These six surfaces are simply the 6 permutations of the 4 dimensions.
Note that we can define time-like loops as well which integrate over paths
involving t. We can express infinitesimal loop integrals with the help of
differential operators, for example.

∂yA
x − ∂xAy = � + ↓↑ = 	 (11.20)

From ψ = exp(−iEt + ipx) we see that the phase shift rate in time is
different in sign as the phase shift rates over space. With this in mind we
can define all possible infinitesimal Wilson loops as.

Fµν = ∂µAν − ∂νAµ (11.21)

This is the well known Faraday tensor of the electromagnetic field which
we can write out explicitly as Fµν =


0 ∂tAx + ∂xAt ∂tAy + ∂yAt ∂tAz + ∂zAt

−∂xAt − ∂tAx 0 ∂xAy − ∂yAx ∂xAz − ∂zAx
−∂yAt − ∂tAy ∂yAx − ∂xAy 0 ∂yAz − ∂zAy
−∂zAt − ∂tAz ∂zAx − ∂xAz ∂zAy − ∂yAz 0



The Faraday tensor is anti-symmetrical with a zero diagonal, due to the
subtraction in equation (11.21). The six independent infinitesimal Wilson
loops determine the six components of the electromagnetic field.

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 (11.22)

(Where c is set to 1) This is the first step in deriving the Lorentz force
from the interacting Klein Gordon equation. It identifies the quantities
involved but it does not yet defines the Lorentz force in a unique way. The
latter requires the combination of the special theory of relativity and the
conservation of the 4-vector potential Aµ.
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11.4 Lorentz force from the acceleration operator

We derived the Klein Gordon acceleration operator in the chapter on the
”Operators of the scalar Klein Gordon field”. We will apply this operator
on the Klein Gordon field, which now will include the electromagnetic
interaction terms, in order to derive the Lorentz force.

The acceleration operator was derived by applying the Hamiltonian H̃
twice on the position operator X̃. We will briefly recall the derivation
here.

Ã
i = − 1

~2

[ [
X̃
i
, H̃

]
, H̃

]
= − 1

~2

[
X̃
i
, H̃2

]
(11.23)

Two cross-terms did cancel in the leftmost expression. The squared Hamil-
tonian H̃2 follows directly from the Klein Gordon equation itself.

H̃2 = − ~2 ∂
2

∂t2
ψ =

(
− ~2c2∇2ψ + m2c4

)
ψ (11.24)

The terms of the Hamiltonian squared which do not commute with X̃i,
(and thus contribute to the acceleration operator), are the second order
derivatives over the axis xi corresponding with the i-th component of the
position operator X̃i.

Ã
i = − 1

~2

[
i~

2mc
xi

∂

∂xo
,−~2c2

(
∂

∂xi

)2
]

= − i~c
m

∂

∂xo
∂

∂xi
(11.25)

This operator needs to be applied on the field ψ = exp(a + iφ) in such a
way that the derivatives do not pick up the real part a of the exponent. It
is the phase φ which determines the momentum and its derivative in time.

For convenance we define the field ψ with phase only. The phase depends
on the inertial momentum pµ, due to the particle’s mass, as well as the
electromagnetic four-vector Aµ

ψ = exp

{
− i

~

∫ (
po + eAo

)
dxo +

i

~

3∑
i=1

∫ (
pi + eAi

)
dxi

}
(11.26)
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This expression does contain integrals over space. However, Special Rela-
tivity does not allow us to do physical integrals over space: A change in
Ai somewhere far away would change the phase instantaneously over the
whole integrated area, violating the speed of light limitation.

This leads us to an essential rule: A change in Ai somewhere must be
locally compensated by an equivalent change in pi, so a change in Ai does
not result to an immediate change in the phases. This happens only over
time due to a change in po, the energy, which changes due to the change
in the momentum pi.

The phase φ in (11.26) corresponds to the total canonical momentum,
while we are looking for ∂pi/∂t, the change of the inertial momentum.

The electric Lorentz force

We now turn back our attention to the acceleration operator (11.25). The
order in which we apply the derivatives doesn’t matter, so.

∂

∂xi
∂

∂xo
ψ =

∂

∂xo
∂

∂xi
ψ (11.27)

Applying the above on the field defined in (11.26) gives us the expression.

∂

∂xo

(
pi + eAi

)
ψ = − ∂

∂xi

(
po + eAo

)
ψ (11.28)

These (three) expressions correspond with the three time-like Wilson loops.

We assume that the energy po, the phase change rate in time, is spatially
constant, ∂po/∂xi = 0), and there is therefor no acceleration without the
electromagnetic field. Using xo = ct and Φ = cAo we can write.

∂pi

∂t
= − e∂A

i

∂t
− e ∂Φ

∂xi
(11.29)

We recognize the righthand side as the electric field.

∂~p

∂t
= eE (11.30)
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The magnetic Lorentz force

We have obtained the electric part of the Lorentz force. In order to obtain
the magnetic part also we must assume that the field has a local effective
velocity ~v which can be derived via the velocity operator.

For any arbitrary function f , over which the particle moves along with a
velocity ~v, we can write the derivative in time as.

df

dt
=

∂f

∂t
+

∂f

∂x
vx +

∂f

∂y
vy +

∂f

∂z
vz (11.31)

This expresses that a moving particle will experience a spatial derivative
as a temporal derivative. Replacing f with pµ gives us

dpµ

dt
=

∂pµ

∂t
+

∂pµ

∂x
vx +

∂pµ

∂y
vy +

∂pµ

∂z
vz (11.32)

The first term on the right is associated with the electric force and the
latter three with the magnetic force. So for the full Lorentz force we have
to consider the purely spatial variants of (11.27) also:

∂

∂xi
∂

∂xj
ψ =

∂

∂xj
∂

∂xi
ψ (11.33)

(i 6= j)

With ψ defined as in the integral expression (11.26) this gives.

∂

∂xi

(
pj + eAj

)
ψ =

∂

∂xj

(
pi + eAi

)
ψ (11.34)

If we single out one i,j-pair of the above expression, for instance x, y

∂

∂x

(
py + eAy

)
ψ =

∂

∂y

(
px + eAx

)
ψ (11.35)

and look at one component of the velocity, v = (vx, 0, 0), then this becomes.(
∂py

∂t
+ evx

∂Ay

∂x

)
ψ =

(
0 + evx

∂Ax

∂y

)
ψ (11.36)
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This gives us a single component of the magnetic force in the y-direction.

∂py

∂t
= evx

(
∂Ax

∂y
− ∂Ay

∂x

)
= − evx Bz (11.37)

Replacing x with z gives us the other component in the y-direction.

∂py

∂t
= evz

(
∂Az

∂y
− ∂Ay

∂z

)
= + evz Bx (11.38)

Further repeating this for the other combinations gives us the full magnetic
Lorentz force ~F = e~v × ~B

F x =
∂px

∂t
= evy Bz − evz By

F y =
∂py

∂t
= evz Bx − evx Bz

F z =
∂pz

∂t
= evx By − evy Bx

(11.39)

Parallel and orthogonal Lorentz force components

Instead of separating the Lorentz force into an electric and magnetic part
we can also treat it as a combination of parallel and orthogonal compo-
nents. The parallel components of F x are those containing Ax.

Parallel Lorentz force terms(
F x
)
‖

= − e
∂Ax

∂t
− evx

∂Ax

∂x
− evy

∂Ax

∂y
− evz

∂Ax

∂z
(11.40)

Special relativity requires that the phase φ induced in the x-direction by
the parallel components is directly compensated by a changing inertial
momentum in the x-direction.

Orthogonal Lorentz force terms(
F x
)
⊥

= − e
∂Φ
∂x

+ evx
∂Ax

∂x
+ evy

∂Ay

∂x
+ evz

∂Az

∂x
(11.41)

All terms are all derivatives in x. Notice how the term ∂Ax/∂x in both
expression cancels for the total force F x in the x-direction.
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11.5 Parallel electric Lorentz force term

Figure 11.3: Electric force from a change of Ay in t

We can distinguish between four different types of contributions to the
Lorentz force, these are handled in this section plus the next three ones.
The phase pattern induced by the different ∂Aµ terms is the same in all
four cases and shown as a gray background pattern.

Figure (11.3) shows the parallel electric term −∂tAy. The time evolution
is shown along the horizontal axis. An increasing Ay induces an increasing
spatial phase change rate in the vertical direction.

Special relativity requires that the field ψ cancels this phase change rate
by accelerating in the opposite direction because of locality. It has to be
canceled because otherwise the local phase would depend on arbitrary far
away values of eAyψ.

This component is the reason that an accelerating charge exerts a force on
nearby charges in the opposite direction, thereby making it harder to accel-
erate a bunch of charges as a whole. The result is that a bunch of charges
moving at a certain speed has a higher momentum than the inertial mo-
mentum based on the sum of the masses. It has an extra electromagnetic
momentum.
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11.6 Orthogonal electric Lorentz force term

Figure 11.4: Electric force from a gradient of Φ in y

Figure (11.4) shows the orthogonal electric term −∂yAo. There is a higher
potential field (Φ = + + +) at the upper side of the image as compared to
the bottom where (Φ = 0). The time evolution is shown on the horizontal
axis going to the right.

The differences of the phase change rates in time, at the top and at the
bottom, build up an increasing spatial phase change rate along the y-axis.
The field ψ has to cancel this spatial phase change rate with an opposing
spatial phase change rate by accelerating along the y-axis.

The cancelation is required by locality and special relativity. It guaran-
tees that arbitrary far away values of eΦψ do not have an instantaneous
influence on the value of the local phase φ of the field, since the phase φ
is co-determined by the integral

∫
eΦψ dy.

This component is behind the observed fact that bound states have a
certain fixed energy-level. The charge field accelerates in the direction of
a lower potential so that the sum of the potential and kinetic energies
remains constant.
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11.7 Parallel magnetic Lorentz force term

Figure 11.5: Magnetic force from the derivative of Ay in x

The parallel magnetic term −vx∂xAy is shown above in figure (11.5). It is
almost identical to the parallel electric term shown in figure (11.3). The
difference is that the horizontal axis is now a spatial dimension, the x-axis,
instead of the time dimension.

The particle is now assumed to have a velocity vx along the x-axis. From
the particle point of view, the horizontal axis can thus be seen as a time
axis: the place where it we be after a certain amount of time. This is the
reason for the correspondence between figure (11.5) and figure (11.3).

The vertical phase change rate is a direct result of the Ay component.
Locality and special relativity require that the field ψ cancels this by ac-
celerating in the opposite direction of Ay.

We see that the general rule is that: All space-like integrals of eAµψ are
inhibited by special relativity. Only time-like integrals (path-integrals) are
allowed. This means that the vector field Aµ does not modify the phase
φ of the field at different spatial locations directly. The influence of Aµ

comes only over time because the accelerations change the inertial energy
of the field and thus the phase change rate in time.
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11.8 Orthogonal magnetic Lorentz force term

Figure 11.6: Magnetic force from the derivative of Ax in y

Finally, the orthogonal magnetic term vx∂yA
x is shown in figure (11.6). In

this case a vertical phase change rate builds up as a result of the changing
Ax, which increases from bottom to top.

The horizontal induced phase change rates are a direct result of Ax, while
the vertical phase change rate is an indirect effect. This side effect occurs
because the phase φ is a scalar value while Aµ is a vector.

A scalar value can not contain the same amount of information as a vector
field so different vector fields Aµ inevitably must map to the same phase
field φ. These different field configurations are of course the four cases
which have been presented here.

The field ψ moving to the right has to cancel the indirectly induced phase
change rate by accelerating downwards along the y-axis because of locality
and special relativity.

The acceleration is in this case a combined effect of the scalar nature of
the field plus the locality required by special relativity. The same is true
in the case of the orthogonal electric case as shown in figure (11.4)
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11.9 The total four-vector Lorentz force

For a fully relativistic theory we want all four components of the Lorentz
force. To find the change in inertial energy ∂po/∂t we start by taking
the time derivative of the usual relation below for the inertial momentum
which stays valid even when there is interaction.

∂

∂t

{
p2
o

}
=

∂

∂t

{
p2
x + p2

y + p2
z +m2c2

}
(11.42)

With the substitution of ~v = ~p/po we can write this as.

∂po

∂t
= ~v · ∂~p

∂t
(11.43)

Substituting the Lorentz force in gives us.

∂po

∂t
= ~v · e

(
E + ~v × B

)
(11.44)

and since the last term containing the magnetic field is zero per definition
we get for the change in inertial energy.

∂po

∂t
= e~v · E (11.45)

We did see here that the magnetic field can not increase or decrease the
inertial energy density of the particle because the acceleration is orthogonal
to the velocity. The inertial energy density is what we would infer from
the speed, the particle’s mass and the local density.

This result now allows us to express the total relativistic four-acceleration
as follows in Lorentz Heaviside units (with c=1).

∂Uν

∂ τ
=

e

m


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0




γ
−βxγ
−βyγ
−βzγ

 =
e

m
F νµ Uµ

(11.46)



11.9 The total four-vector Lorentz force 19

Where τ is the local proper time γt and where Uµ is the relativistic four
velocity ∂xµ/∂τ .

We can split the four-vector Lorentz force in parallel and orthogonal com-
ponents, where the parallel components of ∂Uν/∂τ contain the four po-
tential Aν in the same direction.

∂Uν

∂ τ
=

e

m

(
∂µAν − ∂νAµ

)
Uµ (11.47)

So the first term at the right hand site contains the parallel components
while the second term contains the orthogonal components.

The parallel components arise from special relativity. The phase induced
by Aν causes an acceleration in the direction (or opposite direction) of Aν

which cancels the phase. The phase must be canceled because the local
phase is determined by a spatial integral which requires information from
A and ψ from everywhere. Such an integral would require instantaneous
communication if the effects on the phase don’t cancel.

The orthogonal components are added to assure that the phase change,
while going around a Wilson loop, is zero. The orthogonal components
thus arise from the restriction that the total (canonical) momentum is
determined by the phase change rates, where by the phase φ is a scalar.
We can say that the orthogonal components arise from the U(1) symmetry
of the Klein Gordon field where U(1) is the group containing all possible
values of exp(iφ).

The results obtained here can be carried over one-to-one to the Dirac field
which, unlike the Klein Gordon field, has also a spin and corresponding
magnetic moment besides a charge. One can decompose the charge-current
density of the Dirac field into two components using the so-called Gordon
decomposition. One of the components is exactly the same as that of the
Klein Gordon field and it represents the charge of the electron.

The other component turns out to represent the charge-current density due
to the electron’s inherent magnetic moment caused by its spin. This spin
based charge-current density produces an additional four-potential field Aµs
and responds to other external potential fields.
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11.10 Maxwell’s equations

It is now easy to verify Maxwell’s laws. We have derived the four vector
Lorentz force and the corresponding Faraday tensor Fµν containing the
six components of the electro-magnetic field corresponding with the six
possible Wilson loops in 4d space.

There is not really much to add here from a quantum field perspective
besides a few remarks. All which is required is elementary classical elec-
tromagnetism, and this section is merely added for completeness.

Maxwell’s inhomogeneous equations

Starting with the two inhomogeneous equations which yield the source of
the field (the charge-current density).

We have Gauss’ law for the electric field.

∇ ·E =
ρ

ε0
(11.48)

and Ampre’s circuital law. (both laws are given in SI units).

∇×B = µ0J + µ0ε0
∂E
∂t

(11.49)

Maxwell’s inhomogeneous equations can be expressed more elegantly in
the relativistic four-vector form:

0 − 1
c∂xEx − 1

c∂yEy − 1
c∂zEz = −µo Jo

+ 1
c∂oEx 0 − ∂yBz + ∂zBy = −µo Jx

+ 1
c∂oEy + ∂xBz 0 − ∂zBx = −µo Jy

+ 1
c∂oEz − ∂xBy + ∂yBx 0 = −µo Jz

(11.50)
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Which is an explicit way of writing (in SI) the well know expression.

∂v F
µν = − µo Jµ (11.51)

One interesting observation from a quantum theory perspective can be
made if we split Fµν in its parallel and orthogonal components.

Fµν = ∂µAν − ∂νAµ (11.52)

For Maxwell’s inhomogeneous equations we get.

∂µ∂vA
ν − ∂ν∂vAµ = − µo Jµ (11.53)

The first term is zero, it contains the expression for the conservation of the
vector potential.

∂vA
ν = 0 (11.54)

The total net ”current” ~A streaming out of a volume element dx3 is equal
the the decrease in time of Ao.

This term contains the orthogonal components which are due to the scalar
nature of the field ψ. The orthogonal components are thus not related to
the charge-current density Jµ.

The second term gives us the wave equation for the electromagnetic po-
tential field.

∂ν∂vA
µ = µo J

µ (11.55)

The parallel components of the Lorentz force are thus involved in the source
of the electromagnetic field.
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Maxwell’s homogeneous equations

The first homogeneous equation is Gauss’ law for magnetism

∇ ·B = 0 (11.56)

Which follows from B = ∇× ~A, and we have Faraday’s law of induction.

∇×E = −∂B
∂t

(11.57)

Which follows from E=−∂t ~A−∇~Φ and ∂vA
ν=0, the conservation law.

Maxwell’s homogeneous equations can be expressed more elegantly in rel-
ativistic four-vector form:

0 − ∂xBx − ∂yBy − ∂zBz = 0

+ ∂oBx 0 + 1
c∂yEz − 1

c∂zEy = 0

+ ∂oBy − 1
c∂xEz 0 + 1

c∂zEx = 0

+ ∂oBz + 1
c∂xEy − 1

c∂yEx 0 = 0

(11.58)

Which is an explicit way of writing (in SI) the well know expression.

∂v
∗Fµν = 0 (11.59)

where ∗Fµν is the so called Hodge1 dual of Fµν . Thus, ∗Fµν is a con-
travariant tensor which has the E’s and B’s swaped.

1Note that this popular use of differential geometry assumes a non relativistic 3d
space where the E’s are one-forms and de B’s are two-forms. However, as we have seen
from the Wilson loop treatment, both E and B are two forms defined by exterior products
in 4d Minkowski space.
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11.11 Covariant derivative and gauge invariance

Our starting point in this chapter was the interacting Klein Gordon equa-
tion. Here we already assumed how Aµ gives rise to phase changes. We
can ask ourself how this relation between Aµ and the phase of ψ arises
in the first place. This brings us to the subject of the so-called gauge
transformations.

We did see that we can define the phase of the field as integrals over time
and space.

ψ = exp

{
− i

~

∫ (
po + eAo

)
dxo +

i

~

3∑
i=1

∫ (
pi + eAi

)
dxi

}
(11.60)

Firstly this expression seems over determined, however the scalar nature
of φ and special relativity just constrains the values of pµ and Aµ. The
expression relates the two in such a way that a change in Aµ must give
rise to a corresponding change in pµ, and this change in pµ corresponds to
the Lorentz force.

The spatial integrals are not allowed in special relativity since they would
result in instantaneous information transport. This means that a variation
δAi must be compensated by a variation δpi. The scalar nature of φ then
introduces a corresponding set of terms which guarantees that the change
in phase integrated over a Wilson loop is zero.

We can obtain extra insights about the constraints and degrees of freedom
of Aµ and pµ with the theory of local gauge invariance. The field ψ is said
to be global gauge invariant because the physics doesn’t change if we add
a constant phase to it globally.

ψ ⇒ eiαψ (11.61)

Where α is a global constant independent of place and time. This is
evident, but what if we make this variation local by defining a function
Λ(xµ) which can vary from place to place?

ψ ⇒ eiΛψ (11.62)
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If we assume that Λµ is a variation on the phase due to Aµ then the above
is how the field ψ transforms under the variation Λ. The variation of the
Aµ itself due to Λ is given by.

Aµ ⇒ Aµ +
1
e

(∂µΛ) (11.63)

Who will this variation Λµ of Aµ effect the inertial four-momentum pµ?
We can express pµ in the interacting case as:

pµ =
i~c
2m

(
ψ∗
←→
Dµψ

)
=

i~c
2m

(
ψ∗Dµψ + ψ Dµ∗ψ∗

)
(11.64)

where: Dµ = ∂µ − ieAµ

From equation (11.63) we see that the variation Dµ becomes.

Dµ ⇒ ∂µ − ieAµ − i(∂µΛ) (11.65)

From now on we will use the words ”transforms as”, where the transform
is said to be a gauge transformation. So, from the above we can now work
out that Dµψ transforms as

Dµψ ⇒ eiΛDµψ (11.66)

and the complex conjugate ψ∗ transforms as.

ψ∗ ⇒ ψ∗ e−iΛ (11.67)

Combining the two expressions above we see that.

ψ∗Dµψ ⇒ ψ∗Dµψ (11.68)
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This term is thus invariant under a variation of the phase with Λ and this
means that the four-momentum density pµ is also invariant under such a
phase variation with a scalar field Λ.

pµ ⇒ pµ (11.69)

This is not so surprising since a scalar phase field has the property that
the change in phase integrated over a Wilson loop is zero. The begin and
end points are the same and they obviously have the same value.

We can therefor say that expressions like ψ∗Dµψ, ψ∗Dµψ and pµ are
gauge invariant expressions. This then validates the name gauge covariant
derivative for an expression like Dµ = ∂µ − ieAµ. If we would have used
the ordinary derivative then the resulting momentum density would not
have been gauge invariant.


