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26.1 The 16 bilinear Dirac field components

The fully exended Gordon decomposition provides a powerful tool to obtain
a thorough understanding of the fundamental behavior of the interacting
electron and in general the interacting fermion described by the Dirac
equation.

I turns out that, despite the long and painstaking calculations, all the
results can be arranged in a compact manner which is easy accessible for
interpretation. We’ll apply the decomposition on all the Dirac bilinear
fields (16 components in total)

The bilinear Dirac fields

Scalar ψ̄ψ 1 component
Vector ψ̄γµψ 4 components

Antisym.Tensor ψ̄σµνψ 6 components

Axial vector ψ̄γµγ5ψ 4 components

Pseudo scalar iψ̄γ5ψ 1 component

(26.1)

These fields are, due to their Lorentz transform, associated with: The in-
variant mass (scalar), The charge/current density (vector), the spin density
(axial vector) and the magnetization/polarization tensor.

26.2 The 16 fermion field description parameters

By applying the decomposition we determine how these fields depend on
the first order derivatives of, not only, the magnitude and phase of the field
but on how they depend on the first order derivatives of a systematically
complete set of 16 field description parameters including for instance the
local rotation and local boost of the field.
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The Magnitude, Phase, Balance and Phase skew are the single component
field descriptors which transform like Lorentz scalars. The Boost, Rota-
tion, Magnetization and Polarization are all 3-component field descriptors
which transform like tensor fields. The generators of the 16 fermion field
description parameters and their relations can be compactly defined by.
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The single component field descriptors are associated with σo while the
3-component field descriptors are associated with the spatial matrices ~σ.
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(26.4)

All generators of the set, acting in spinor space, are systematically scaled
with the same factor 1

2 familiar from the boost and rotation generators.
This means they are scaled to express their effect in Minkowsky space.

The Magnetization and Polarization generators are the same as those from
the σµν tensor. The Phase skew generator occurs in Electroweak interac-
tions where the intermediate vector boson fields act asymmetrically on the
left and right chiral components ψL and ψR
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26.3 The Fundamental operator dependencies

A fundamental relationship exists between the two sets of similar field
description parameters. The single component scalar descriptors at one
hand and the 3-component tensor descriptors at the other.

This relationship is the result of the eigenvector property of a spinor ξs
with the subscript s indicating that ξs points in the direction of vector ~s:(

~σ · ~s
)
ξs =

(
σo |s|

)
ξs (26.5)

This tells us that the spinor ξs is an eigenvector of the matrix (~σ · ~s) with
an eigenvalue of |s|. As a result we can make the following statements.

• Magnitude and Magnetization
A change of a spinor’s magnitude is equivalent to a change of the
magnetization in the direction of the spinor.

• Phase and Rotation
A change of the spinor’s Abelian phase is equivalent to a rotation of
the spinor around its own axis.

• Balance and Boost
A change in the field’s balance, the ratio between ψL and ψR, is
equivalent to a change of the boost in the corresponding direction of
the spinors.

• Phase skew and Polarization
A change in the relative phase between ψL and ψR, the phase skew,
is equivalent to a change of the polarization in the corresponding
direction of the spinors.

The scalar generators act in the same way as the directional 3-component
generators do when their direction is aligned with that of the spinors. This
works both ways, if the directions are not aligned then a factor cos θ with
θ as the relative angle determines how much the effect of the directional
operators corresponds with the effect of the scalar operators.
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26.4 The Gordon decomposition method

The expressions for the bilinear fields do not contain any partial differen-
tials. It is the Dirac equation which links the values of these fields to the
first order differentials of the field. We write the Dirac equation like this,

ψL = ~
mc( i σ

ν ∂ν )ψR

ψR = ~
mc( i σ̃

ν ∂ν )ψL

(26.6)

to show us how to substitute ψL and ψR by differentiated terms. We then
take the bilinear product terms and substitute both ψ∗ and ψ one at a
time and average the results, for instance.
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2
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) (26.7)

Then we consider ψL and ψR as exponentials exp(Ĝ · G) of the whole
set of generators Ĝ defined above. We can now define ∂µψL and ∂µψR

as a function of the first order derivatives ∂µG of the field description
parameters G associated with the set of generators Ĝ.
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26.5 The extended Gordon decomposition
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The result of all the Gordon decomposition can now expressed in the very
compact form given above, which we will discuss from here on. This ex-
pression will also be very useful because of the simple way in which the
electromagnetic and electroweak interactions are added to it.

Note first that we have given all generators the same factor 1
2 which ends

up in the 2 at the leftmost side of the expressions. This avoids messing up
our expressions. It means that all the field description parameters, living
in spinor space, are scaled to express their effect in Minkowsky space.

We see that the derivatives of the field description parameters get organized
in four groups which transform as vectors.(
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(26.10)

Each of the four scalar field descriptors pairs with a tensor. These ten-
sor are the boost-rotation tensor Jµν and the polarization-magnetization
tensor Pµν as well as their Hodge duals. All elements of the complete
expression will be written out a bit further on.

The four groups which transform as vectors are combined with the standard
bilinear fields to define the complete Gordon decomposition of each of the
five fields we started with. Note also how the decomposition expresses
fields build out of ψ∗LXψL and ψ∗RXψR, which are products of equal handed
components, in terms of fields build out of ψ∗RXψL and ψ∗LXψR which are
mixed handed products. This is simply the result of the way we substitute.

The anti-symmetric tensor is constructed by combining (axial-)vector terms
using an algebraic commutation operator ©∧ and its Hodge dual defined by.

fµ ©∧ gν = Tµν = fµgν − fνgµ

fµ
?
©∧ gν =

?

Tµν =
?

fµgν − fνgµ
(26.11)
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The anti-symmetric boost-rotate tensor Jµ
ν and its Hodge dual

?

Jµ
ν are

written explicitly out as.

Jµ
ν = ~ϑ · K̂ + ~φ · Ĵ =


0 ϑx ϑy ϑz

ϑx 0 −φz φy

ϑy φz 0 −φx

ϑz −φy φx 0



?
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−φz −ϑy ϑx 0


(26.12)

Where K̂ and Ĵ are the generators of boost and rotation respectively
as they are defined in Minkowsky space. The polarization-magnetization
tensor Pµ

ν and its Hodge dual are defined as.

Pµ
ν = ~M · ~K + ~P · ~J =


0 Mx My Mz

Mx 0 −Pz Py

My Pz 0 −Px
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(26.13)

The anti-symmetric tensor σµν which is used for the bilinear tensor field
ψ̄σµνψ is defined with the use of the gamma matrices as.

σµν = i
2( γµγν − γνγµ)

?

σµν = 1
2( γµγν − γνγµ) γ5

(26.14)

The Hodge dual is obtained by a (commutative) multiplication with −iγ5,
but even so: The mapping of a tensor’s components to those of its Hodge
dual version is always the same for all the tensors we used.
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26.6 The full divergence of the currents

The general form of the complete Gordon decomposition is the result of the
Dirac equation structure γµ∂µψ and it is for this reason that the divergence
of the vector and axial current exhibit a similar form.
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We recognize the latter as the Gordon decomposition of the pseudo scalar
and so we recover the familiar.

∂µ

(
ψ̄γµγ5ψ

)
= 2mc

~ iψ̄γ5ψ (26.16)

Note that this holds even without imposing the Dirac equation on the
divergencies which normally leads to this result.
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