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First the Abelian electromagnetic field is handled after which the same steps are repeated for the
non Abelian case. The Field tensors are derived from the operator that determines the phase change
rates when acting on the fields. The starting point of the Lagrangian density is simply the scalar
Lagrangian which is extended to the more complex groups by taking symmetries in account which
lead to the addition of terms which produce indistinguishable phase change rates in U(1) and SU(2)
respectively.

I. THE ABELIAN FIELD TENSOR

In the Abelian case we have a scalar field ψ with an U(1)
symmetry. Such a field with inertial momentum pµ in-
cluding the momentum from electromagnetic interaction
Aµ is given by:

ψ = ψpψA = exp
{
− i

~
xµ

(
pµ + eAµ

)}
(1)

If the inertial momentum pµ, and the electromagnetic
momentum eAµ are not constant then we need to take
the the integrals along the coordinate axis.

ψ = ψpψA = exp
{
− i

~

∫
dxµ

(
pµ + eAµ

)}
(2)

This is an over specified expression. The phase is a scalar
while pµ and Aµ are four vectors. This restricts the pos-
sible values of pµ and Aµ. More specifically, the four-curl
of the total momentum pµ +eAµ must be zero. The inte-
gral is the inverse of the (four)gradient operator and the
curl of a gradient is zero per definition.

Changes in Aµ require a cancelation by opposite changes
in pµ to keep the integral a simply connected scalar field.
These changes of pµ of course represent the Lorentz force.
The operator which gives the changes of the four momen-
tum when acting on ψ is given by.

∂µ pνψ
p = i~ ∂µ∂νψ

p (3)

Which can be seen by applying this operator on (2). The
order of the ∂µ∂ν derivatives should make no difference
in the case of the complete field ψ and therefor.

i~
(
∂µ∂ν − ∂ν∂µ

)
ψ = 0 (4)

This states that the curl of pµ + eAµ is zero. However,
if we separate ψ into pµ and Aµ factors then we have
the individual fields ψp and ψA which are not simply
connected anymore on their own.

Fµν ψA =
i~
e

(
∂µ∂ν − ∂ν∂µ

)
ψA (5)

If we let the differential operators act on the on the ”Aµ

only” part of (2) then we obtain.

Fµν ψA =
(
∂µAν − ∂νAµ

)
ψA (6)

We have derived the Abelian field tensor corresponding
to the electro magnetic field.

II. THE ABELIAN LAGRANGIAN

Although the Lagrangian density of the electromagnetic
field looks rather different compared to the scalar La-
grangian density. It’s actually just a few steps away from
the Klein Gordon Lagrangian density which is given by.

L =
1
2
(∂µφ)(∂µφ)− 1

2
m2φ2 (7)

We discard the mass term and we replace the scalar field
ψ with the four components of the vector field Aµ coos-
ing the indices so that the resulting Lagrangian density
transforms like a Lorentz scalar. The result is, up to a
unit system dependent constant:

L =
1
2
(∂µAν)(∂µAν) (8)

However, we have to replace all terms like ∂µAν with
(∂µAν −∂νAµ). The phase which the two terms between
brackets induce in a scalar field is indistinguishable. We
therefor get.

L =
1
2
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) (9)

So only the curl of the potential Aµ contributes to the
Lagrangian density of the electro magnetic field. Conse-
quently it can be expressed in terms of the field tensor.

L = − 1
4µo

FµνFµν =
1
2

(
B ·H −D · E

)
(10)

Normalized in SI units.
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III. THE NON-ABELIAN FIELD TENSOR

We can derive the non-Abelian field tensor in exactly the
same way. The non-Abelian interaction is given by.

ψG = exp
{
− ig

~
T i

∫
dxµG

µ
i

}
(11)

Where the T i are the generators of the group. In case of
the SU(2) group these are the Pauli-matrices divided by
two. We can now derive the non-Abelian field tensor in
exactly the same way as in (5)

Fµν ψG = − i~
g

(
∂µ∂ν − ∂ν∂µ

)
ψG 6= 0 (12)

Showing the i-indices explicitly with the definitions
Fµν = T iFµν

i and Gµ = T iGµ
i in mind, we derive.

T i Fµν
i = T i

(
∂µGν

i − ∂νGµ
i

)
−

i g
~

(
T jGν

j T
kGµ

k − T kGν
k T

jGµ
j

) (13)

The last two terms, which cancel in the U(1) case, can
be written as a commutation over the i-indices.

Fµν = ∂µGν − ∂νGµ − ig
[
Gµ , Gν

]
(14)

This is the usual presentation. We have set ~ to 1 here.
We can also group the terms of the non Abelian field
tensor depending on from which term of (∂µ∂ν−∂ν∂µ)ψG

they originate.

T i Fµν
i =

(
∂µ − igT jGµ

j

)
T kGν

k −
(
∂ν − igT kGν

k

)
T jGµ

j

(15)
Making the i-indices implicit and defining a gauge co-
variant derivative Dµ = ∂µ − igGµ we can simplify this
to.

Fµν = DµGν −DνGµ (16)

This shows that the non Abelian field interacts with it-
self.

IV. THE NON-ABELIAN LAGRANGIAN

Going back to the scalar Lagrangian density.

L =
1
2
(∂µφ)(∂µφ)− 1

2
m2φ2 (17)

Applying this to the non Abelian field Gµ we use the ”co-
variant derivative” Dµ since this is the expression which
determines the phase change rates in this case: The ro-
tation rates in SU(2). Ignoring the mass term we get

L = tr
1
2
(DµGν)(DµGν) (18)

The trace sums over the i-indices. We must however re-
place terms like DµGν with ones like (DµGν − DνGµ)
since the two terms between brackets contribute equally
to the rotation rates in SU(2) and are there for indistin-
guishable. Hence the Lagrangian becomes.

L = tr
1
2
(DµGν −DνGµ)(DµGν −DνGµ) (19)

Which we express in the field tensor as follows.

L = − tr
1
4
FµνFµν (20)

Where the factor 1/4 stems from the structure coeffi-
cients.


