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abstract

We describe how one can transform the standard representation of the
Dirac equation into a new, spatially symmetric, real valued representa-
tion. It is shown how this new representation can be used as a direct
replacement in QED and other standard model applications, it produces
the same results and the notation is carefully developed to be virtually
identical to the standard notation.

The real symmetric representation allows a simple geometric visualization
of the eight parameters of the bi-spinor. The eight corresponding vectors
ψ̄eγ

µψe symmetrically point to the eight vertices of a cube from the center
outwards. Locating the parameters on this cube allows us to visualize
the linear relations imposed by the gamma matrices acting on the bi-
spinor. These visualizations turn out to be simple and easy interpretable,
in contrast with the seemingly intricate algebraic operations of the complex
gamma matrices.

The real symmetric representation replaces the 2×2 complex matrices by
4×4 real matrices and so SO(4)∼= Spin(3)⊗Spin(3) becomes the represen-
tation’s group of unitary generators. SO(4) contains all 6 possible rotation
and phase generators while only 4 of these are used in the SU(2) represen-
tation (5 if Majorana particles are included). It is SO(4) which allows us
to make the representation symmetric in x, y and z.

It will become apparent throughout this document that, as the result of
SO(4), an extended Dirac equation arises which connects much better with
the rest of the Standard Model physics beyond QED.
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1 Overview of the real symmetric representation



1.1 Motivation for a real valued representation 7

1.1 Motivation for a real valued representation

Single spinors with 2 complex numbers contain four independent parame-
ters. Only the 4×4 real valued matrix operators with 16 coefficients are
able to define 100% of all the possible linear relations between the four
components of a spinor field. The 2 × 2 complex matrices used in the
standard representation for instance are limited to just eight coefficients.

Algebra R real C complex H quaternions

general group Mat(4,R) Mat(2,C) HL ⊗ HR

operator form


R R R R
R R R R
R R R R
R R R R




R
R
R
R

 (
C C
C C

)(
C
C

)
( HL HR ) ( H )

operator size 16 parameters 8 parameters 8 parameters

The 4×4 real matrix representation and thus the SO(4) group of unitary
generators provides the most general representation. All other represen-
tations, not only the standard one, but also the quaternion based repre-
sentations as well as David Hestenes’ Real Dirac theory can be directly
formulated in the 4×4 real matrix representation. This therefor provides
a single framework to understand all other representations and the ways
in which these representations interrelate.

Missing coefficients (degrees of freedom) in the matrix operators means a
risk of missing essential physics. For instance, the extra degrees in freedom
is what allows us to make the representation symmetric in x, y and z. In
order to restore the missing coefficients we follow a two-step process. First
we transform the complex into a real valued representation and secondly
we remove the artificial restrictions imposed on the coefficients.

a+ ib −−−−−−−−−−−→
complex to real−−−−−−−−−−−→

(
a − b
b a

)
−−−−−−−−−−−→
add coefficients−−−−−−−−−−−→

(
a c
b d

)
(1)
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1.2 The three charge generators of SO(4)

A 4×4 real matrix representation implies the SO(4) group of unitary gen-
erators and its six unitary generators. This group decomposes in two sub-
groups like SO(4)∼= Spin(3)⊗Spin(3). One of these two subgroups always
becomes the group of absolute rotation generators in any representation,
the real, the complex and the quaternion representation.

Algebra R real C complex H quaternions

rotation group Spin(3)⊗Spin(3) Spin(3)⊗Spin(3) Spin(3)⊗Spin(3)

space rotation 3d rotation 3d rotation 3d rotation
iiσi iσi q̂R

phase rotation 3 charges 3 charges 3 charges
ii i, σ2∗, iσ2∗ q̂L

The second Spin(3) group always becomes a group of three orthogonal
generators of charge, also in all representations. In the quaternion rep-
resentation the two Spin(3) groups are for instance given by the left- and
right-multiplying quaternions q̂L and q̂R.

The Spin(3) group of charge generators also exist in the standard Dirac
representation! but the three generators are expressed in a rather awkward
way by iσo, σ2∗ and iσ2∗. The first one, generally written as i, is just the
generator of electric charge. The two other generators can not be expressed
by 2×2 complex matrices due to the limitations mentioned but require a
complex conjugate operator ’*’ (without transpose) acting on the spinor
to the right.

The last generator is often mentioned as the charge conjugate operator
and frequently used for the construction of Majorana particles. It is quite
remarkable that the elementary fact that i, σ2∗ and iσ2∗ have the operator
commutation relations of a Spin(3) group is absent from the literature. This
group has an important role to play the Standard Model physics beyond
QED and is thoroughly studied in this document.
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1.3 Basic elements of the real valued representation

The notation of the real representation is virtually identical to the standard
notation and it is often only when we write out the Pauli matrices explicitly
that the difference in notation becomes apparent. We can continue to use
the standard notation because we reintroduce i. It is defined as the real
valued 4× 4 matrix being the formal replacement for the matrix iσo. This
matrix is used in the real valued representation instead of the value i and
it allows us to reuse most of the standard complex notation.

i2 = −1 i−1 = −i e±iφ = 1 cosφ ± i sinφ (2)

We can further use iin combination with the real valued 8 × 8 gamma
matrices where it is applied as

�
i 0
0 i

�
. The Dirac equation in the new

representation looks just like the standard one.

The Dirac equation

standard notation: γµ (∂µ + ieAµ)ψ = − imψ

↓ (3)

symmetric and real: γµ (∂µ + ieAµ)ψ = − imψ

Where the only difference in notation is that i has become the matrix i.

The 8 independent parameters of the bi-spinor field (4 real and 4 imagi-
nary) become 8 real valued variables in the new representation. Each chiral
component is represented by a 4 × 1 matrix. The Pauli matrices become
4× 4 real matrices instead of 2× 2 complex ones, doubling the number of
elements per matrix. So, for instance, the complex

ψ†L σ ψL =
(
a+ ib
c+ id

)†(
a00 + i b00 a01 + i b01
a10 + i b10 a11 + i b11

)(
a+ ib
c+ id

)
(4)

Becomes the entirely real valued expression.

ψᵀ
L σ ψL =


ψ1

ψ2

ψ3

ψ4


ᵀ

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33




ψ1

ψ2

ψ3

ψ4

 (5)
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The conjugate transpose † is replaced by T, the real transpose. We may
replace † with T because the method we use to go from complex to real
numbers follows the rule.

(a+ ib)† →
(
a −b
b a

)T
(6)

You might want to check this with σ†2 = σ2. There is yet another rule
which allows us to express the spinors by 4 × 1 column vectors instead
of the 4 × 2 matrices one would expect since we have to replace complex
numbers by 2× 2 matrices. If you look at the second column of the 2× 2
matrix then you see that it can be obtained from the first column by.(

−b
a

)
=

(
0 −1
1 0

)(
a
b

)
(7)

The matrix here is just the number i. Both columns contain the same
information. The same happens in the real valued representation where
the second column is given by.

ψ′1
ψ′2
ψ′3
ψ′4

 = i


ψ1

ψ2

ψ3

ψ4

 (8)

The second column is just the first column multiplied by i. This is what
allows us to remove the second column from the representation. In the
more general case an expression like ψ†1 ψ2 will produce a complex result
with both a real and an imaginary part. In the real valued representation
these two are obtained independently by.

re
(
ψ†1 ψ2

)
im
(
ψ†1 ψ2

)
↓ ↓ (9)

ψᵀ
1 ψ2 − ψᵀ

1 i ψ2

Contractions such as this one tend to reintroduce complex notation because
they produce two results. In practice we will reuse the standard notation
using 4 × 1 spinors and explicitly write out some elementary ’real’ and
’imaginary’ algebra while actually using only real matrices, when necessary.
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1.4 From SU(2) to SO(4) spinor operator representation

Figure 1: Under the symmetric choice for the charge generator i the three
J L

i generate relative spinor precession. If added together they act as i
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SU(2) spinor operator representation

In the complex SU(2) spinor representation there are four generators of
rotation based on the four matrices iσµ. The first one iσo is the U(1)
generator of phase and is typically written as just i. The other three are
the rotators in 3 dimensional space.

The U(1) rotator has the beautiful fundamentally important property that
it always rotates a spinor around its own axis entirely independent of the
direction of the spinor. For a spinor ξs pointing in the ~s direction we can
therefor write with (i~s · ~σ) as the rotation generator.

eis ξs = ei~s·~σ ξs (10)

The reason for this is that we define the spinor ξs as being an eigenvector
of the boost matrix (~s · ~σ) in the ~s direction, and we therefor may replace
the (~s · ~σ) at the right hand side by the eigenvalue s at the left hand side.

The U(1) operator eis is thus a relative rotator, depending only on the
orientation of the spinor, while the other three are absolute rotators fixed
to the coordinate system. Important is that a field based on U(1) leads to
rotational independent physics.

SO(4) spinor operator representation

In the real valued SO(4) spinor representation something even more beau-
tiful happens. The six rotators of SO(4) decompose into two sets of 3 rota-
tors in three dimensional space. One set again rotates absolute around the
coordinate system axis but the other set of 3 generators rotates relative to
the spinor orientation like the U(1) operator. Group theoretically:

SO(4) ∼= Spin(3)abs ⊗ Spin(3)rel (11)

This relative rotation is possible because a spinor has, besides a direction,
also an orientation around its own axis given by its phase. A spinor is
often depicted as a flagpole with the pole giving the direction and the flag
giving the phase. A spinor can therefor span a coordinate system and it is
in this relative coordinate system in which the Spin(3)rel group operates.
A field based on Spin(3)rel leads to rotational independent physics.
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The two sets of rotation generators, called Jabs
i and J rel

i , commute with
each other. The first one is the normal rotation generator Ji and we use
the latter for the replacement of i using 1

2 ii = J rel
i and so we may write.

SU(2) representation : [ Ji , i ] = 0
SO(4) representation : [ Ji , ij ] = 0

(12)

This means that we can use any linear combination of ii to define a gen-
erator i which is equivalent to the U(1) generator i in the SU(2) repre-
sentation. This generator will be Abelian due to the above commutation
rules.

i = cxix + cyiy + cziz (13)

The group formed by the ii generators rotates relative to the spinor itself.
Like in the SU(2) representation we define the spinor ξs pointing in the ~s
direction to be an eigenvector of the boost matrix ~s · ~σ in the ~s direction
and therefor the generator matrix i rotates the spinor around its own axis:

e i~s·~σ ξs = e is ξs (14)

Using the original SO(4) generators we find that the ξs must be the eigen-
vectors of the product of the two Spin(3) groups: ciJ rel

i sjJ
abs
j and we derive

a simple expression which gives us the four real values of all spinors ξs at
arbitrary phase φ, spin direction si and base ci.

Definition of the real valued spinors

ξs =
( s+ c )
‖ s+ c ‖

e−iφ (15)

s = ( 0, sx, sy, sz )

c = ( 0, cx, cy, cz )
(16)

The down spinors are simply those with the base (−ci). Note that we
can use the sx, sy and sz values directly to define the spinor parameters
without doing any calculations! This truly beautiful feature is obscured in
the SU(2) presentation. The unit vector r is per definition non zero and it
therefor has to shift one or more coordinates. In the SU(2) case it shifts
the z value of the spin. The Riemann sphere projection geometry is just
the result of the normalization factor in the denominator.
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Different choices of i lead to different base vectors.

Figure 2: The left handed (L1..L4) and right handed (R1..R4) base-vectors
as determined by particular choices of the generator of charge i= ciii
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1.5 Making the base vectors symmetric in 3 dimensions

We now have a representation which allows use to use any direction instead
of the fixed z-axis in the SU(2) representation. It allows us in some sense
to ”look” at the representation itself from any angle. From figure (2) it
shows that the representation can actually be viewed as a cube with the 8
independent bi-spinor parameters on the vertices.

If we look at a cube in normal space then under certain directions we see
only a 2 dimensional square. We can label these specific directions the x,
y and z axis. Looking from these directions we might miss the fact that
we are actually looking at a cube.

In the spinor representation this effect is even more profound. If we ”look”
at the representation from the x, y and z directions then all we ”see” is
just a 1 dimensional line along that axis and we miss out completely on
the fact that we are ”looking” at a cube.

If we want to treat the three directons x, y and z on equal footing in
our representation then there is only one direction which does this, the
direction which fixed our definition of i as.

i = 1√
3

(
ix + iy + iz

)
(17)

Figure (2) shows us the base-vectors of various representations. The rep-
resentation becomes spatially symmetric in three dimensional space if we
make the base vectors symmetric. The bi-spinor has eight of these base
vectors corresponding to the eight parameters it has. The base vectors are
defined as ψ̄e γ

µ ψe where the bi-spinor of each base vector has only one
non-zero parameter equal to 1.

The bi-spinor in the SU(2) representation has four real and four imagi-
nary parameters. The spatial part of the eight base vectors has only z-
components because only σz has non-zero elements on the main diagonal
which maps the 1’s to the 1’s. The base vectors are four-fold degenerate
and spatially oriented in a one dimensional symmetric way as shown in
the upper part of figure (2). We obtain the real valued Pauli matrices
by replacing each complex value in the SU(2) representation with a real
matrix a+ ib→

�
a −b
b a

�
. Then we get the SO(4) representation if we allow

any two-by-two real matrix. In the SO(4) representation then these extra
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degrees of freedom allow us to define three independent sets of Pauli ma-
trices instead of one. These define the gamma matrix sets γµ

1 , γµ
2 and γµ

3 ,
one for each axis, with corresponding base vectors.

ψ̄e γ
µ
1 ψe, ψ̄e γ

µ
2 ψe, ψ̄e γ

µ
3 ψe (18)

This is the definition of the base-vector sets as shown in the upper part of
figure (2). Each linear combination of these matrix sets can be equally well
used for the gamma matrices. By adding the matrix sets together we add
the resulting base vectors together. So, for instance we can define three
sets of two-fold degenerate base vectors which are oriented symmetrically
in a two-dimensional plane as shown in the middle of figure (2)

ψ̄e
1√
2
( γµ

2 + γµ
3 )ψe, ψ̄e

1√
2
( γµ

3 + γµ
1 )ψe, ψ̄e

1√
2
( γµ

1 + γµ
2 )ψe (19)

We achieve our goal of a three dimensional spatial symmetric represen-
tation by simply adding the three sets of gamma matrices together with
the correct scale factor. The symbols x, y and z are treated on equal
footing and the representation becomes maximally symmetric. The eight
corresponding base vectors point to the eight vertices of the unit cube.

ψ̄e γ
µ ψe = ψ̄e

1√
3
( γµ

1 + γµ
2 + γµ

3 )ψe (20)

The rotation group ii is continuous but the eight real parameters of the
bi-spinor can be considered to be part of a discrete group, for instance this
cube which we will use to visualize the operators acting on the bi-spinor.

If we limit ourself to QED then we do not need to look at the ii anymore and
just use the i generator. Going beyond we see that all three ii precess any
spinor with exactly the angle required for a spin 1/2 particle as determined
by the ratio between sz and s. This angle corresponds with the angle of the
<1, 1, 1> direction with the <1, 0, 0>, <0, 1, 0> and <0, 0, 1> directions.
In the SO(4) representation we can split the vector current into three
individual precessing currents as in (20). Individually these precessing
vector currents would emit high frequency radiation but combined together
they act as i and the radiating parts cancel. In figure (1) one can see from
the projections of Sx, Sy and Sz on the (vertical) spinor that each generator
contributes 1/3 to the total Abelian generator of charge.
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1.6 Overview of the real bi-spinor parameter visualization

Figure 3: Visualization of the interpretation and key points
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Very useful is a geometrical visualization of the eight values of the bi-spinor
fermion field. Since the eight corresponding base-vectors ψ̄e γ

µ ψe point to
the vertices of a cube we can visualize the values as being localized on
the eight vertices of an idealized (infinitely small) cube aligned to the xyz
coordinate system.

The U(1) phase: The vertices are the end points of the four central axis
of the cube. Each axis is associated with a left and a righthanded base-
vector. All the base-vectors transform light-like. The U(1) group occurs
because vectors and axial vectors are defined with four axial orientations.
There is an infinite number of ways in which a vector can be defined in
this way because of the one parameter redundancy: the phase of the field.
This encodes the U(1) group in a symmetric three dimensional way.

The operator connections: With the eight values of the bi-spinor field
visualized on the cube’s vertices we have a means to visualize the operators.
The operators define linear connections between the field values. There are
two distinct sets of connections.

• The 12 face diagonals of the cube −→ Pauli matrices

• The 12 edges of the cube −→ Mass coupling term

The Pauli matrices represent connections along the face-diagonals of the
cube. This causes (1) that the cube is automatically separated into two
(chiral) states which are each others parity inverse with respect to the
center of the cube and (2) The phase of the fermion field is one-halve of
the geometrical angle, as required for a spin 1

2 field.

The connections along the edges of the cube represent the mass coupling
between the two chiral states which is defined symmetrically in the x, y
and z coordinates.

Omnidirectional rotation: This representation also solves the question
of how the Abelian U(1) operator, which is effectively a two dimensional
rotator, can work in a three dimensional space without having a preferred
direction. We will see from the generators of rotation that it acts as an
omnidirectional rotator which simultaneously rotates values on the faces
of the cube in the outward (or inward) directions. Such an omnidirectional
U(1) operator can only be defined by acting along the face-diagonals of the
cube.
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The 8×8 bi-spinor operator representation

Figure 4: The generators of rotation and the generator of charge
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The 8×8 bi-spinor operator representation

Figure 5: The generators of boosts and the mass coupling matrix
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1.7 The 8×8 bi-spinor operator representation

Figures (4) and (5) show in detail the correspondence of the bi-spinor
matrices at one hand and the lines connecting the parameters in the visu-
alization.

Generally there’s no reason for this level of detail since, at the Pauli matrix
level, the representation is exactly the same as the standard representation.
For instance the generators of rotation and boosts.

J i = − 1
2

(
σi 0
0 σi

)
Ki = 1

2

(
−σi 0
0 σi

)
(21)

Or the matrices accompanying the electromagnetic interaction term and
the mass term in the Dirac equation.(

i 0
0 i

)
eAµ

(
0 i
i 0

)
m (22)

These are the matrices shown in detail in figures (4) and (5). The lines
between parameters correspond to pairs of coefficients which connect the
parameters, either asymmetrically for the rotation generators and the ma-
trices for eA and m, or symmetric for the boost generators.

Asymmetric: ±

0 · · · −1
...

. . .
...

1 · · · 0

 Symmetric: ±

0 · · · 1
...

. . .
...

1 · · · 0

 (23)

The symmetric boost generators have also coefficients on the main diago-
nal, either +1 or -1. These are visualized by the color of the parameter.
The color is lighter if the parameter will grow due to a boost in the corre-
sponding x, y or z direction while the color is shown darker if the parameter
will get smaller.

The matrices accompanying eA and m are symmetric in x, y and z due
to the choice made for i. Both matrices are shown in their individual
components and as complete matrices. The complete matrices are the
normalized sums of the individual component matrices.
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2 The real symmetric Dirac equation
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2.1 The real 4×4 spinor rotation generators

A good way to find the spatial symmetric, real valued 4× 4 matrix equiv-
alents of the Pauli matrices is to start with the complex generators of
rotation. We’ll find that their real valued representation is already sym-
metric in the x, y, z coordinate system. We obtain the real valued matrices
by applying the standard substitution:

a+ ib =
(
a −b
b a

)
(24)

Substitution in the three complex spinor rotation generators given by
Ji=− i

2σi gives us the following 4× 4 spinor rotation matrices:

The real valued 4×4 spinor rotation generators

−1
2 iσx′ , − 1

2 iσy′ , − 1
2 iσz′ = (25)

1
2


0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

, 1
2


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

, 1
2


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


Where i is the 4 × 4 matrix representation of iσo which is to be defined.
Each of the real valued matrices does contain two generators of rotation.

j =
(

0 −1
1 0

)
exp φ

2 j =

 cos φ
2 − sin φ

2

sin φ
2 cos φ

2

 (26)

Using the three matrices we construct the general spinor rotation operator.

exp(J iφi) = exp 1
2


0 φx φy φz

−φx 0 −φz φy

−φy φz 0 −φx

−φz −φy φx 0

 (27)

This rotation operator is the 4×4 real valued matrix representation of the
quaternions1 first described (in their original form) by Hamilton in 1843.

1The quaternion coordinate system results in matrices which are easier to remember.
A spatial coordinate system rotation {x′, y′, z′} = {z − y, x} is used with regard to the
standard Pauli matrices σi. We will omit the ’ during the rest of the document.
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2.2 Visualization of the rotation algebra

Figure 6: Rotation generator acting on the (left) chiral state.

Both the left and right chiral spinor become a 4×1 real valued array. The
8 values of these two arrays may be envisioned on the 8 vertices of a cube
aligned with the coordinate system. The two chiral components are each
other’s parity inverse on the cube.

The generators of rotation pair diagonally located values at 180o on the
faces of the cube so that the spatial angle is twice the 90o phase difference
between the sine and the cosine, as is required for a spin 1

2 representation.
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2.3 The symmetric 3 dimensional generator of charge

A remarkable mathematical property of the U(1) operator is that it acts
isotropically on spinors. It always rotates a spinor around the spinor’s own
axis completely independent of the direction in which the spinor points. It
rotates relative with regard to the spinor instead of absolute around some
fixed axis. For a spinor ξs pointing in the ~s direction we can therefor write.

ei~s·~σ ξs = eis ξs s = q
s2

x + s2
y + s2

z (28)

The reason for this is that we define the spinor ξs as being an eigenvector
of the boost matrix ~s · ~σ in the ~s direction, and we therefor may replace
the ~s · ~σ at the left hand side by the eigenvalue s at the right hand side.

(~s · ~σ) ξs = s ξs s = q
s2

x + s2
y + s2

z (29)

We see that we are allowed to associate a geometric meaning to the phase
φ as the angle of rotation around the spinor axis by 2φ. The operator U(1)
is therefor Abelian and apparently two dimensional since there is only one
such axis, even in three dimensional space.

The goal is now to construct a matrix, symmetric in the x, y and z com-
ponents, which acts as the generator of rotations of a spinor around it own
axis. We start by using the ”complex-number-to-real-matrix” rule (24) and
apply it on the matrix iσo which is the generator of the Abelian phase φ
in the standard notation.

iσo =
(

i 0
0 i

)
⇒


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 (30)

This U(1) generator also contains two rotators as in the case of the spinor
rotation generators. It is actually the same as Jx with the sign of one
rotator reversed2, as shown in figure 7. Both rotators now point outwards
and in opposite directions.

2”The same as Jz with one rotator reversed” in Pauli’s choice of coordinates
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2.4 The symmetric charge generator algebra visualized

Figure 7: The charge generator as the averaged sum of ix, iy and iz
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This definition of U(1) is not symmetric in space and it leads to spin eigen-
states which are not symmetric in x, y and z. We can obtain spin states
which are direction independent by using the extra degrees in freedom
given by the real 4×4 matrices. We can define one such ”directional” ii
generator for each of the three coordinate axis. as shown in figure 7.

The two matrices iy and iz can not be represented3 by 2×2 complex matri-
ces. We can define a triplet of generators J rel

i (= 1
2 ii). This triplet has the

same commutation rules as the normal rotation generators Jabs
i (= −1

2 iσi).[
J rel

i , J rel
j

]
= εijk J rel

k ,
[
Jabs

i , Jabs
j

]
= εijk Jabs

k (31)

Together however they commute. Relative rotation commutes with ab-
solute rotation and therefor any linear combination of the generators of
relative rotation J rel

i commutes with any linear combination of the Jabs
i[

J rel
i , Jabs

j

]
= 0, for all i and j (32)

We can use any such linear combination of the ii as an Abelian charge
operator and thus chose a symmetric one:

The 4×4 real valued, symmetric in space U(1) generator

i = 1√
3
( ix + iy + iz) = 1√

3


0 −1 −1 −1
1 0 −1 1
1 1 0 −1
1 −1 1 0

 (33)

The symmetric one is the one which will give us symmetric spin eigen
states. For all matrices i2 = i2x = i2y = i2z = −1 is true. This U(1)
operator has no preferred direction in the representation in the sense that
it has components in the representation rotating in all directions equally.
See both figures (7) and (8). However, it rotates the spinor eigenstates,
which do have a specific direction, around their own axis. Therefor it is
an Abelian, ”two dimensional” operator in a three dimensional space.

3These matrices can be represented by using the complex conjugate operator * which
selectively inverts the sign of two of the four spinor parameters, the imaginary ones. We
find that σ2∗ and iσ2∗ correspond with the matrices ix and iy. These two operators
do not commute with i. The three commute instead as a triplet of relative rotation
operators. The generators σ2∗ and iσ2∗ always rotate a spinor perpendicular relative to
the spinor’s axis.
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2.5 The charge generator acting on the total bi-spinor

Figure 8: The real chiral spinor shown under U(1) time evolution.

Figure (8) shows the locations of the individual chiral bi-spinor parameters.
The arrows show how the electromagnetic U(1) time evolution operator
acts on the chiral bi-spinor. All the individual sine/cosine interactions are
directed outwards in case of the left chiral component of an electron and
inwards for the right chiral one. For a plane wave at rest in a static field:

interaction
(
∂ψ

∂t

)
= U(1)ψ = − ieAoψ (34)
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2.6 The real valued symmetric Dirac equation

With the definition of iand the three iσi from the rotation generators we
have already made all the definitions required to define the fully symmetric,
real valued replacement of the Dirac equation. We can replace the standard
complex, asymmetric Dirac equation

iγµ (∂µ + ieAµ)ψ = mψ (35)

with the real valued, spatial symmetric form of the Dirac equation with a
virtual identical notation.

The real valued, spatial symmetric Dirac equation

iγµ (∂µ + ieAµ)ψ = mψ (36)

All we needed to do here was just replacing both i with the real matrix i.
When we write out the gamma matrices into explicit Pauli matrices the
real valued Dirac equation(

0 iσµ

iσ̃µ 0

)(
∂µ +

(
i 0
0 i

)
eAµ

)
ψ = mψ (37)

All the new definitions we need to use are here given by the four matrices.

iσo, iσx, iσy, iσz = (38)

1√
3

0
BB@

0 −1 −1 −1
1 0 −1 1
1 1 0 −1
1 −1 1 0

1
CCA,

0
BB@

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

1
CCA,

0
BB@

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

1
CCA,

0
BB@

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

1
CCA

We can simply use i for the first matrix since σo remains the unity matrix.
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2.7 Visualization of the real symmetric Dirac equation

Figure 9: The real symmetric Dirac equation and its derivative matrices.
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2.8 The geometrical meaning of the matrices

The real symmetric representation allows us to understand the geometrical
meaning of the matrices used in the equation, as shown in figure (9).

First of all we see that the spatial connections, visualized by the red, green
and blue lines, point in the direction associated with the indices of iγi∂i

and thus in the same direction as the derivatives are taken over the field.

We want to understand how the spatial derivative matrices combine with
the time derivative matrix in order to produce the equation of motion. We
do so by starting first with simpler equations.

2d linearized Klein Gordon equation[(
0 −1
1 0

)
∂

∂t
+
(

0 −1
−1 0

)
∂

∂x

]
ψ = mψ (39)

2d real valued Dirac equation[0
BB@

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

1
CCA
∂

∂t
+
0
BB@

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

1
CCA
∂

∂x

]
ψ = mψ (40)

4d real valued Dirac equation[
iγo ∂

∂t
+ iγx ∂

∂x
+ iγy ∂

∂y
+ iγz ∂

∂z

]
ψ = mψ (41)

In all three cases above the square of expression between brackets −[· · · ]2
becomes the d’Alembertian so that all individual field components obey
the Klein Gordon equation.

−
[
· · ·
]2

= ∂µ∂
µ −→

(
∂µ∂

µ +m2
)
ψ = 0 (42)

The matrices are anti commuting. The time derivative matrix must be
unitary and antisymmetric in such a way that (iγo)2=−1 while the spatial
derivative matrices must be symmetric instead so that (iγi)2=1



2.9 Left and right moving sub-equations of motion 33

2.9 Left and right moving sub-equations of motion

The two simplest possible equations of motion are given below. The field
ψL can be any arbitrary field which shifts to the left with velocity c and
ψR is an equivalent right shifting field.

∂ψL

∂t
− c

∂ψL

∂x
= 0 − ∂ψR

∂t
− c

∂ψR

∂x
= 0 (43)

One way to accommodate both the left and right moving solutions is the 2d
second order classical wave equation. This equation owes its bidirectional
nature to the parameter c2 where c can be both positive and negative.

∂2ψ

∂t2
− c2

∂2ψ

∂x2
(44)

But there is another possibility which combines both the linear nature of
(43) and the classical wave equation given above. We do so by retaining
the left and right moving waves as two separated components of a two
component wave function.[(

0 −1
1 0

)
∂

∂t
+ c

(
0 −1

−1 0

)
∂

∂x

](
ψL

ψR

)
= 0 (45)

This expression combines both equations (43) into a single equation. If
we apply the operator between square brackets twice (by squaring it) then
we recover the classical wave equation (44) and so both the left and right
going components ψL and ψR obey the classical wave equation.

We obtain the 2d linearized Klein Gordon equation (39) if we couple the
two independent equations with a mass term mψ. From the classical wave
equation and its Greens function we know that the term on the right hand
side is actually the source of the wave function ψ. In the case of the Klein
Gordon equation the field becomes its own source, the right moving channel
ψR becomes a source for the left moving channel ψL and visa versa. The
resulting field can propagate at any speed between +c and −c. A typical
plane wave solution for this equation has the form of a sine/cosine pair,
the real valued equivalent of exp(−iEt+ ipx).

The following equation, the 2d real valued Dirac equation (40) has four
parameters, two involved in left shifting and two involved in right shifting.
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Left and right moving sub-equations of motion

Figure 10: The split into left shifting and right shifting sub-equations.
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We can now see how the full, 4d real valued Dirac equation is composed
out of left shifting and right shifting sub-equations in the three spatial
directions x, y and z.

Figure (10) shows how each of the eight parameters is involved in three shift
sub-equations, one each in the x, y and z direction indicated by the red,
green and blue arrows. The parameters are labeled with the corresponding
shifting directions, left or right, per coordinate axis.

The eight vector currents ψeγ
µψe, corresponding to the eight parameters in

isolation, point from the center of the cube outwards to the eight vertices
associated with the individual parameters. We see these current directions
back in the shift sub-equations in which the parameters are involved.

The 8×8 matrix in the middle shows where the shift sub-equations are
located. The x, y or z directions correspond with the non-zero elements of
the x, y and z matrices. The shift direction, left or right, is determined by
the sign relation of the time derivative matrix and the corresponding space
derivative matrix. Equal signs correspond to right shifting while unequal
signs correspond with left shifting.

2.10 Gradient and divergence sub-equations of motion

The linearization separates the d’Alembertian ∂µ∂
µ in a gradient and di-

vergence part. Figure (11) highlights how this works for one of the eight
parameters: The Left chiral parameter 1 which is labeled LLL.

The x, y and z components of the gradient of this parameter go to its
three nearest neighbors in the x, y and z direction. The place where this
happens is in the first column of the matrices. The following application
of the matrix/differential operator then combines the derivatives of these
three values back again via the divergence operation. The divergence takes
place in the first row of the matrices.

The columns are always associated with the gradient operations while
the rows are associated with the divergence operatations. The interme-
diate gradient results get mixed with other gradient results but the non-
commutative nature of the matrices separates them again by eliminating
the cross-terms.

The gradient time derivative is, due to the symmetric shifting sub-equations,
distributed along equally with the three spatial derivatives.
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Gradient and divergence sub-equations of motion

Figure 11: The split of the d’Alembertian in gradients and divergencies.
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2.11 The real valued Pauli and Gamma matrices

To complete the definition of the matrices we obtain the 4×4 real valued
replacements of the Pauli matrices from the now know iσµ matrices by
simply multiplying these with -i. We obtain,

The spatial symmetric, real valued Pauli matrices

σx, σy, σz = (46)

1√
3


1 0 −1 1
0 1 1 1

−1 1 −1 0
1 1 0 −1

, 1√
3


1 1 0 −1
1 −1 1 0
0 1 1 1

−1 0 1 −1

, 1√
3


1 −1 1 0

−1 −1 0 1
1 0 −1 1
0 1 1 1


The matrix σo remains the unity matrix. All Pauli matrices σµ are sym-
metric while all matrices iσµ are anti-symmetric so that the standard ex-
pressions in the complex representation

σ†µ = σµ, (i σµ)† = −i σµ (47)

become:

σᵀ
µ = σµ, (iσµ)ᵀ = −iσµ (48)

in the real valued representation. The main diagonal elements of all Pauli
matrices are non-zero. This is what causes the base vectors ψ̄eγ

iψe to be
non-degenerate and spatially symmetric as we shall see in the next section.
The trace of each of the three Pauli matrices σx, σy and σz is zero.

At the gamma matrix level nothing changes despite the rather different
appearance of the Pauli matrices themself.

γ0 =
(

0 1
1 0

)
γi =

(
0 σi

−σi 0

)
(49)

The standard definition of the γ5 matrix leads to the familiar chiral result.

γ5 = i γoγxγyγz =
(
−1 0

0 1

)
(50)

This completes the set of gamma matrices in the chiral representation.
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2.12 The Lie algebra of the Lorentz group

The standard definitions4 also apply for the Lie algebra of the Lorentz
group. We’ll list the basic equations here. The anti commutator of the
gamma matrices produces the metric.

{ γµ , γν } =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (51)

While the commutator produces the representation of the Lorentz algebra.
Note that we’ll use the convention that not uses the number i since the
goal is to treat the representation as an entirely real valued one.

Jµν = 1
4 [ γµ , γν ] (52)

This means that all generators generators of rotations and boosts at the
chiral spinor level.

Ji = −1
2

(
iσi 0
0 iσi

)
Ki = −1

2

(
σi 0
0 −σi

)
(53)

The generators obey the Lie algebra of the Lorentz group.

[ Ji, Jj ] = εijk Jk [Ki,Kj ] = −εijk Jk [Ji,Kj ] = εijk Kk (54)

where εijk is the totally anti-symmetric symbol. For the representation
algebra we can simply replace the i with the real matrix i.

J+
i = Ji + iKi J−i = Ji − iKi (55)

The commutation rules stay the same.

[
J+

i , J
+
j

]
= εijk J+

k

[
J−i , J

−
j

]
= εijk J−k

[
J+

i , J
−
j

]
= 0 (56)

4note that the definitions of both the generators and commutators are all in the real
valued form as in classical relativistic dynamics.
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2.13 The 3d symmetric mass generator algebra visualized

Figure 12: The submatrices couple the chiral states along their own axis.

For a free field in its restframe, which has no spatial derivatives and no
interaction, we can rewrite the Dirac equation as.

H =
∂

∂t
= −

(
0 i
i 0

)
m (57)

In this form it represents the Hamiltonian time evolution generator.
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The Hamiltonian operator to determine ψ for any time t becomes.

H(t) = exp
{
−
(

0 i
i 0

)
mt

}
=
(

1 0
0 1

)
cos(mt)−

(
0 i
v 0

)
sin(mt)

(58)
The matrix iconnects the two chiral states via the mass parameter m. The
chiral states are each others parity inverse. The submatrices ix, iy and
iz couple the chiral states over the x, y and z-axis respectively. This can
be checked by looking at figure (7) and moving one of the two interacting
vertices via the center of the cube to the location at the other side.

2.14 The base-vectors of the bispinor field

The chiral bispinor contains a set of 8 real parameters. These parameters
can be visualized as being located on the eight vertices of a cube, with the
locations determined by the vector currents.

cube vertex location = ψ̄e γ
i ψe (59)

Each of the ψe has only one non-zero parameter. This means that we
only have to look at the main diagonals of the Pauli matrices since the
non-diagonal coefficients are multiplied by zero.

diag(σx) = ( 1, 1,−1,−1)
diag(σy) = ( 1,−1, 1,−1)
diag(σz) = ( 1,−1,−1, 1)

(60)

These diagonal coefficients5 determine the location of the parameters:

(
ψL
ψR

)
=



ψL1

ψL2

ψL3

ψL4

ψR1

ψR2

ψR3

ψR4


visualized at:

x = −1 y = −1 z = −1
x = −1 y = 1 z = 1
x = 1 y = −1 z = 1
x = 1 y = 1 z = −1

x = 1 y = 1 z = 1
x = 1 y = −1 z = −1
x = −1 y = 1 z = −1
x = −1 y = −1 z = 1

(61)

5All diagonals from the four σµ combined give the 4× 4 Hadamart matrix.
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2.15 The spinor eigenstates under U(1)

We will discuss here how to derive the spin eigen-states. We will do so for
the most general case of a normalized arbitrary U(1) operator using:

i = ĉx ix + ĉy iy + ĉz iz (62)

We’ll then find our symmetric spin states by setting all ĉ to
√

1/3 but
we can also retrieve the asymmetric eigen-states of the complex equation
where only one of the three ĉ is non-zero.

The spin states are the eigenvectors of the Pauli matrices. The ones with
eigenvalue +1 are the spin-up states while the spin-down states have -1 as
eigenvalue. The Pauli matrices thus multiply the up-states by 1 and the
down-states by -1.

This is why we can use the Pauli matrices to extract the vector current
ψ̄γµψ and axial current ψ̄γµγ5ψ. It is also the reason that we can use the
Pauli matrices as the generators of boosts since the boost of a spin in a
direction (anti-)parallel to its spin-direction only changes the magnitude
of the spin and not its direction.

For the light-like transforming chiral components a boost comes down to
a relativistic doppler shift representing the transformed phase change rate
due to the boost. The operators exp(±1

2ϑ
iσi) are the expressions for the

relativistic doppler shift due to a rapidity change ±ϑi with an extra factor
1
2 in the argument because the fermions transform as spin 1

2 particles.

The complex Pauli matrices each have two spin states, one spin-up state
(eigenvalue +1) and one down (eigenvalue -1). The real valued 4 by 4 Pauli
matrices have four eigenvectors: two degenerate orthogonal eigenvectors
for each spin state, up and down so that we can write.

ξ(t) = ξ1 cos(ωt)− ξ2 sin(ωt) versus ξ(t) = ξ e−iωt (63)

The spinning ξ(t) remains an eigenvector for any time t. This is why we
need 2 orthogonal eigenvectors to allow the real valued spin to spin.



2.16 The fully symmetric electron spin eigenstates 42

2.16 The fully symmetric electron spin eigenstates

Figure 13: The symmetric spin eigenstates (left chiral component)
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Now, working out the spin states for the three Pauli matrices in the general
case gives us for the left chiral component in the rest frame:

The up spinors



ax sin 1
2 (ωt− φx)

ax cos 1
2 (ωt− φx)

bx cos 1
2 (ωt+ φx)

bx sin 1
2 (ωt+ φx)


,



ay sin 1
2 (ωt− φy)

by sin 1
2 (ωt+ φy)

ay cos 1
2 (ωt− φy)

by cos 1
2 (ωt+ φy)


,



az sin 1
2 (ωt− φz)

bz cos 1
2 (ωt+ φz)

bz sin 1
2 (ωt+ φz)

az cos 1
2 (ωt− φz)




(64)

The down spinors



−bx cos 1
2 (ωt+ φx)

−bx sin 1
2 (ωt+ φx)

ax sin 1
2 (ωt− φx)

ax cos 1
2 (ωt− φx)


,



−by cos 1
2 (ωt+ φy)

ay cos 1
2 (ωt− φy)

−by sin 1
2 (ωt+ φy)

ay sin 1
2 (ωt− φy)


,



−bz cos 1
2 (ωt+ φz)

az sin 1
2 (ωt− φz)

az cos 1
2 (ωt− φz)

−bz sin 1
2 (ωt+ φz)




(65)

The values of the ai, bi and φi parameters follows from the three ĉi as.

ax =
√

1
2(1 + cx), bx =

√
1
2(1− cx), φx = arctan

(
cy
cz

)
ay =

√
1
2(1 + cy), by =

√
1
2(1− cy), φy = arctan

(
cz
cx

)
az =

√
1
2(1 + cz), bz =

√
1
2(1− cz), φz = arctan

(
cx
cy

) (66)

The rotators are pointing in the required direction and they posses the
factor 1

2 between the geometrical angle of rotation and the phase of the
wave function as required for spin 1

2 particles.
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The chiral component are equal in the rest frame (ψL = ψR) in case of
the electron and (ψL = −ψR) in case of the positron. This factor -1 which
amounts to a 180o phase shift and a 360o geometrical angle makes the
difference between a negative charge and a positive charge.

Figure 13 shows the relative angles for the left chiral spinor as 0o, 45o, 90o

and 135o increasing clockwise for the spin up state of the electron, just as
we would like for a spin one-half particle. The images are all seen from the
negative side of an axis in the direction of the positive side.

The electron’s spin down states rotate the other way around with an addi-
tional feature: Two of the values on the cube are multiplied by −1 repre-
senting a 360o geometrical angle. This feature is specific for all spin-down
states for both the electron and positron and is related to the negative
eigenvalue of the states. The positron spin states rotate in the opposite
direction as those of the electron states, as already shown in figure 3.

The values of the three ĉ are
√

1/3 in our fully symmetric case where all
components are the same. This leads to the following numerical values.

a = 0.8880738339 = cos θ
b = 0.4597008433 = sin θ

(67)

The major components (a) and the minor components (b) rotate both in
the same direction, the direction of the spin, even though the operator
tries to rotate the minor component in the other direction. The coupling
with the larger major component forces the minor component to rotate in
the same direction.

U(1) operator: ⇐⇑
⇓⇒ spin state:

(
⇑
↑

)
(68)

The spin states of the original complex Dirac equation are obtained from
the general expression with ĉx, ĉy, ĉz = 0, 0, 1. We obtain for the z-state:

a = 1.0000000000
b = 0.0000000000

(69)
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2.17 The complex dot products and real spinors

Complex dot products such as ψ†LψL are simplified to the functionally
equivalent real valued dot products ψᵀ

LψL. Where † denotes the Hermitian
transpose and ᵀ denotes the normal real transpose. This is directly obvious
in the case that both terms are identical since.

ψᵀ
LψL = ψ2

L1 + ψ2
L2 + ψ2

L3 + ψ2
L4

ψᵀ
RψR = ψ2

R1 + ψ2
R2 + ψ2

R3 + ψ2
R4

(70)

For instance the invariance of ψ†LψL under a phase shift exp iφ as given by,(
eiφ ψ

)†(
eiφ ψ

)
= ψ† e−iφ eiφ ψ = ψ†ψ (71)

becomes in the real valued matrix case the invariance of ψᵀ
LψL under the

(Abelian) phase shift exp iφ(
eiφ ψ

)ᵀ(
eiφ ψ

)
= ψᵀ e−iφ eiφ ψ = ψᵀψ (72)

This because i is an anti-symmetric matrix and thus.

(iψ)ᵀ = ψᵀiᵀ = − ψᵀi (73)

Since the Pauli matrices σµ are all symmetric matrices and the iσµ are all
anti symmetric matrices we can straightforwardly reuse the following left
versus right side multiplication rules.

( σµψ)† = + ψ†( σµ) becomes: ( σµψ)ᵀ = + ψᵀ( σµ)

(iσµψ)† = − ψ†(iσµ) becomes: (iσµψ)ᵀ = − ψᵀ(iσµ)
(74)

The (anti-) symmetry determines the sign. To appreciate this in the case of
the standard complex Pauli matrices remember the matrix representation
of the complex numbers.

(a+ ib)∗ =
(
a −b
b a

)ᵀ

= (a− ib) (75)
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The real part a is symmetric while the imaginary part b is anti symmetric.
Also note that the imaginary Pauli matrix becomes symmetric when we
substitute the i by their matrix representation.

(
0 −i
i 0

)
becomes:


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 (76)

Which is why all the real valued Pauli matrices are symmetric.

2.18 The single column real spinors

We use 4× 1 single column real valued matrices to represent spinors. Ap-
plying the basic conversion rule,

(a+ ib) =
(
a −b
b a

)
(77)

would give us 4×2 matrices. We can however avoid this if we considder that
the second column doesn’t contain extra information an can be derived in
a simple way from the first one.(

−b
a

)
=

(
0 −1
1 0

)(
a
b

)
(78)

The matrix which does this here is just the number i. The two columns
C1 and C2 contain the same information while they are orthogonal in the
sense that Cᵀ

1C2 = 0. Now for a contraction (complex conjugate product)
α†β of two independent complex numbers we can write.

Re
{

(a+ ib)†(c+ id)
}

=
(
a
b

)ᵀ(
c
d

)
= ac+ bd

Im
{

(a+ ib)†(c+ id)
}

= −
(
a
b

)ᵀ( 0 −1
1 0

)(
c
d

)
= ad− bc

(79)

This means that we have two expressions which give us the real and imag-
inary parts of the contraction independently.
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In the real valued spinor representation something very similar happens.
The second column can be derived from the first one via a multiplication
with the matrix i. 

ψ′1
ψ′2
ψ′3
ψ′4

 = i


ψ1

ψ2

ψ3

ψ4

 (80)

The second column is just the first column multiplied by i. In the general
case an expression like ψ†1 ψ2 will produce a complex result with both a
real and an imaginary part which can be obtained independently in the
same way with.

Re
{
ψ†1ψ2

}
−→ ψᵀ

1ψ2

Im
{
ψ†1ψ2

}
−→ − ψᵀ

1 iψ2

(81)

2.19 The transition interference current

The expression for the vector current ψ̄γµψ is per definition real, even in
the case of the interference current of a transition going from an initial
state ψi to a final state ψf .

(ψi + ψf ) γµ (ψi + ψf ) = · · · + ψ̄iγ
µψf + ψ̄fγ

µψi + · · · (82)

The interference part of the current is given by the two complementary
terms on the righthand side which together are real valued. Nevertheless,
in a typical Feynman diagram only one of them is used like in ūf γ

µ ui We
thus have to consider both the real and the imaginary part.

But why is this the case? Both complementary terms contain the same
information and each term has the information required to do the calcula-
tions so that’s not the problem. The point is: Why do we need to consider
the imaginary part also and what does ’imaginary’ mean here in our real
valued representation where we only should need to consider contractions
with a single real valued number as a result.
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Averaging over phase

The reason is that the phase relation between the incoming and the out-
going state is not specifically defined in a Feynman diagram and in fact
we want to average over all possible phase relations rather then specify a
certain phase relation.

Figure 14: Mott scattering (electron - muon)

A change in the phase relation, for instance between the spinors u1 and u3

belonging to the incoming and outgoing momenta p1 and p3 in figure (14)
causes a shift in the real valued interference current pattern. If we shift one
spinor by −90o degrees as in u3 → −iu3 then the (real valued) interference
pattern shifts by −90o as well since p3 is defined by u3 exp(−i pix

i)

Re
(
jtr
)

= ū1γ
µ u3 → a cos (p3 − p1)t

Im
(
jtr
)

= −ū1γ
µiu3 → b sin (p3 − p1)t

(83)

So now we see that the real part and the ’imaginary’ part of the transition
current correspond with two orthogonal sinusoidal interference patterns.
We don’t need to care about the exact phase relation between u1 and u3

in this way. When we calculate the probability M2 at the end then there
is no more phase dependency.

M2 = M∗M ∝ a2 + b2 (84)
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2.20 The bilinear fields

The Dirac field bilinears are defined by using real valued dot products.

ψ̄ ψ = ψᵀ
R ψR + ψᵀ

L ψL scalar
ψ̄ γµ ψ = ψᵀ

R σ
µ ψR + ψᵀ

L σ̃
µ ψL vector

ψ̄ γµγ5 ψ = ψᵀ
R σ

µ ψR − ψᵀ
L σ̃

µ ψL axial vector
ψ̄ i γ5 ψ = ψᵀ

R iψR − ψᵀ
L iψL pseudo scalar

(85)

These are all real valued expressions. For the tensor we have two expres-
sions, one for the real part (the magnetization components) and one for
the imaginary part (the polarization components). These components are
zero in the tensor in which they aren’t defined.

ψ̄ σµν ψ tensor (magnetization)
ψ̄ iσµν ψ tensor ( polarization )

(86)

2.21 The trace theorems

The trace rules generally come to play when the spin sums are applied
in calculating Feynman diagrams. The trace rules for the 8×8 gamma
matrices are the just the same as the usual ones, with one notation to
make: The trace of an 8×8 unit matrix is Tr(1) = 8 instead of 4 in the
case of the 4×4 complex ones.

Where the standard complex calculations use a factor 1
4 in order to use

the spin average instead of the spin sum itself we have to apply a factor 1
8

to do the same, for example.

Trace theorems for 8×8 real valued gamma matrices

Tr(1) = 8
Tr(γµγν) = 8 gµν

Tr(γµγνγλγσ) = 8 (gµνgλσ − gµλgνσ + gµσgνλ)

(87)
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2.22 The spin sum rules

The spin sum rule, for calculations where the spin is averaged out, and
accompanying trace technology can be used equally well in the case of the
real valued Dirac equation.

The two spin states for a certain direction are given by the eigenvectors
of the boost generator in that direction. We did see that with 4×4 real
matrices we get two orthogonal eigenvectors for each spin state, up and
down so that we can write.

ξ(t) = ξ1 cos(ωt)− ξ2 sin(ωt) versus ξ(t) = ξ e−iωt (88)

The degenerate pair of eigenvectors makes it possible that the spin can
spin. Each value of ξ(t) is again an eigenvector. This means that we have
to sum the spin states like this.∑

s↑ s↓
us ūs ⇒

∑
s↑1 s↑2 s↓1 s↓2

us ūs (89)

Over all four eigenvectors. The eigenvectors we get from the Pauli matrices
represent the spinor states in the rest frame. In the rest frame the spin
sum is given by.

∑
spin

us ūs =
(

1 1
1 1

)
(90)

Due to the orthogonality of the eigenvectors and the fact that the eigen-
values are +1 (up) and -1 (down). For the general sum rule we must boost
the chiral spinor to an arbitrary frame. The left and right 2-spinors ξ are
equal in the rest frame. After a boost they become different

ψ =
(
ξ
ξ

)
e−iEot boost

⇒

(
ξ′L
ξ′R

)
e−iEt+i~p·~x (91)

The general boost operator uses the generators in the exponentials. ψL

ψR

 boost
⇒

 exp
(
−1

2ϑiσi
)
ψL

exp
(
+1

2ϑiσi
)
ψR

 (92)
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The square of the Pauli matrices is -1 which means that we can split the
Taylor expansion of the exponential function into a cosh and a sinh part
with no more matrices in the arguments. The factor 1

2 in the argument
becomes an overall square root.

exp
(
±1

2ϑiσi
)

=
√

1 coshϑ ± ϑiσi sinhϑ (93)

So that we can write the general boost operator in a compact form.

√
m

(
ξ
ξ

)
e−iEot boost

⇒

( √
pµ σµ ξ√
pµ σµ ξ

)
e−iEt+i~p·~x (94)

We can thus write for the bi-spinors of the plane-wave eigen-function for
the Dirac particle and its anti-particle.

u(p) =
( √

pµ σµ ξ√
pµ σµ ξ

)
, v(p) =

(
+
√
pµ σµ ξ

−
√
pµ σµ ξ

)
(95)

Where the sign of the right chiral component changes because the coupling
between the two components changes from m to -m. We can now calculate
the extra factors from the boost for the spin sum rule.

∑
spin

us ūs =
( √

pµ σµ
√
pµ σµ

√
pµ σµ

√
pµ σµ

√
pµ σµ

√
pµ σµ

√
pµ σµ

√
pµ σµ

)
(96)

Spin sum rules for the electron and positron

electron:
∑
spin

us ūs =
(

m pµσ
µ

pµσµ m

)
= γµpµ +m

positron:
∑
spin

vs v̄s =
(
−m pµσ

µ

pµσµ −m

)
= γµpµ −m

(97)

Nothing on the last page is specific to the fact that our gamma matrices
are now real valued 8×8 matrices. It all follows from the commutation
rules and the Lie algebra of the Lorentz group.
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2.23 The gauge invariant Lagrangian

The gauge invariant Lagrangian will be Abelian as long as i is a globally
fixed (unitary) linear combination of ix, iy and iz. Such that,

i = cxix + cyiy + cziz (98)

For any such combination the Lagrangian acts as the usual Abelian QED
Lagrangian. If we allow the ci to vary locally and we require the Lagrangian
to posses local gauge invariance then it becomes non-Abelian and extra
field components and currents are introduced.

2.24 The Abelian Lagrangian

Complex dot products such as ψ†LψL are simplified to real valued dot prod-
ucts ψᵀ

LψL. This is obvious in the case that both terms are identical since.

ψᵀ
LψL = ψ2

1 + ψ2
2 + ψ2

3 + ψ2
4 (99)

Since ψ̄ is now just ψγo without the complex conjugate we can simply
take the derivative of both ψ̄ and ψ with regard to ψ itself in the Euler
Lagrange procedure to obtain the equation of motion. For the Lagrangian
this means the same factor 1

2 as in the real valued Klein Gordon equation
for the same reason.

LQED = 1
2 ψ̄ i γµ (∂µ + ieAµ)ψ − 1

4F
µ
νF

µ
ν − 1

2mψ̄ψ (100)

Gives us the real valued, symmetric Dirac equation.

iγµ (∂µ + ieAµ)ψ = mψ (101)

As well as the equation for the vector field Aµ which arises due to the local
gauge invariance of the Abelian U(1) phase.

−∂νFµ
ν = ψ̄γµψ (102)



2.24 The Abelian Lagrangian 53

This tells us that the current density jµ = ψ̄γµψ acts as the source of the
(massless) vector field Aµ, the electromagnetic field of QED. Where Aµ

is responsible for the Abelian U(1) phase changes along the xµ directions
and where Fµ

ν is the field tensor,

Fµ
ν = ∂µAν − ∂νA

µ (103)

expressed in Lorentz group generator form with J and K as the generators
of rotations and boosts for (axial-)vector fields.

Fµ
ν = E · K − B · J =


0 Ex Ey Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

 (104)

So that the change of the (axial-)current in proper time is given by.

∂

∂τ

(
ψ̄γµψ

)
= q

m Fµ
ν

(
ψ̄γνψ

)
∂

∂τ

(
ψ̄γ5γµψ

)
= q

m Fµ
ν

(
ψ̄γ5γνψ

) (105)

The equivalent Lorentz generator Fµ
ν for chiral spinors is.

Fµ
ν = − B · J + E ·K = − 1

2

 (Bii + Ei)σi 0

0 (Bii− Ei)σi

 (106)

Let ψ τ represent the chiral spinor field ψo after the corresponding operator
has acted on it for a total (proper) time τ .

ψ(τ) = exp
(
τ q

m Fµ
ν

)
ψo (107)

Then we can write for the time evolution due to the field tensors.

exp
(
τ q

m Fµ
ν

)
ψ̄oγ

νψo = ψ̄(τ)γ
νψ(τ)

exp
(
τ q

m Fµ
ν

)
ψ̄oγ

5γνψo = ψ̄(τ)γ
5γνψ(τ)

(108)
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2.25 The eigenvectors of the free rest-frame Hamiltonian

In the local restframe and without interaction the Hamiltonian given by
the Dirac equation is simplified to.

H̃ =
∂

∂t
= −

(
0 i
i 0

)
m (109)

This Hamiltonian has 4 pairs of eigenvectors. Each pair contains an
eigenvector with a +im and a −im eigenvalue. This means that we
can construct oscillating ’eigenstates’ with a frequency determined by the
mass. The eigenvalues correspond to exp(imt) and exp(−imt) time evolu-
tion functions which, multiplied with their corresponding eigenvectors and
added, produce real valued sine and cosine functions.

The four elementary eigenstates are directly related to the four diagonal
axes through the center of the cube of chiral spinor parameters. These axis
connect ψL1 with ψR1, ψL2 with ψR2 and so on. We can therefor enumerate
them using their correspondence to ψ1 through ψ4

H
1

c =



cosφ1

0
0
0

0
b sinφ1

b sinφ1

b sinφ1


, H

2

c =



0
cosφ2

0
0

−b sinφ2

0
b sinφ2

−b sinφ2


, H

3

c =



0
0

cosφ3

0

−b sinφ3

−b sinφ3

0
b sinφ3


, H

4

c =



0
0
0

cosφ4

−b sinφ4

b sinφ4

−b sinφ4

0


(110)

The four phases φ1 to φ4 are in principle independent, as well as the
amplitudes. The time evolution term mt is suppressed in the sine and
cosines for simplicity. The value of b is

√
1/3

The phase relation between the left and right chiral components is ±90o.
When the states are added however then, at certain quantized linear com-
binations, charged states occur. We will require that the bilinear fields of
physical states do not depend on the phase φ.
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We can readily check the correspondence to the four axis though the center
of the cube by calculating their axial currents ψ̄γµγ5ψ. We find for the
direction of the axial currents6 in the restframe.

j1	 =


cos 2φ
− 1√

3

− 1√
3

− 1√
3

, j2	 =


cos 2φ
− 1√

3
1√
3

1√
3

, j3	 =


cos 2φ

1√
3

− 1√
3

1√
3

, j4	 =


cos 2φ

1√
3

1√
3

− 1√
3

 (111)

We can rotate the Hj
c from (110) through an angle of 90o which gives us

the four Hj
s given by (112)

H
1

s =



− sinφ1

0
0
0

0
b cosφ1

b cosφ1

b cosφ1


, H

2

s =



0
− sinφ2

0
0

−b cosφ2

0
b cosφ2

−b cosφ2


, H

3

s =



0
0

− sinφ3

0

−b cosφ3

−b cosφ3

0
b cosφ3


, H

4

s =



0
0
0

− sinφ4

−b cosφ4

b cosφ4

−b cosφ4

0


(112)

We can use these sets to express any particle state with κ = 1..4 as.

cκHκ
c + sκHκ

s =
(
cκ +

(
0 i
i 0

)
sκ

)
Hκ

c (113)

2.26 Allowed particle states with phase independent bilinears

If we require that there is no dependency on the phase φ in any of the
five types of bilinear fields then we get eight equations in the eight real
parameters ce and se. The shortest way to write these eight equations is.

(cκ + isκ) σκ (cκ + isκ) = 0 ⇒ aκ σκ aκ = 0 (114)

6 Note the dependence on the phase φ which has to be eliminated for physical states.
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Where each of the four real σκ = σµ is responsible for two equations, one
for the real and one for the imaginary part. However, this reduces to just
four equations in four complex variables with the complex ae and these
equations can be solved exactly.

a1

a2

a3 = + a1 e
± 1

3
iπ − a2 e

∓ 1
3
iπ

a4 = − a1 e
∓ 1

3
iπ − a2 e

± 1
3
iπ

 (115)

Which leaves us with two complex variables a1 and a2 which can be chosen
independently. For each combination of a1 and a2 there are just two sets
of a3 and a4 which correspond with the electron and the positron. (All
signs flip simultaneously). The possible particle states are given by.

ψ =
(

Re(aκ) +
(

0 i
i 0

)
Im(aκ)

)
Hκ

c (116)

The allowed spin up and spin down states states for each xi is given by.

spin up: γi ψ = −γ5 ψ, spin down: γi ψ = +γ5 ψ (117)

2.27 The electron and positron from the eigenstates

We find that the spin sum rule (the completeness rule) of the four Hamil-
tonian eigenstates and the alternative set is time-dependent. We get the
following spin sum for the Hκ

c from (110).

∑
κ=1..4

Hκ
c H̄κ

c =
1
2

−im sin 2φt pµ σ
µ(1 + cos 2φt)

pµ σµ(1− cos 2φt) +im sin 2φt

 (118)

There shouldn’t be any dependency on the phase φ for stable particle
states. To see how we can use the Hamiltonian eigenstates to construct
electron and positron eigenstates we first define the set of eigenstates cor-
responding with the parameters of the other chiral state. We can do so
due to the degeneracies in the eigenvalues.
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These eigenstates have the left and right chiral components swapped com-
pared to the those of the Hc from (110).

H
′1

c =



0
b sinφ1

b sinφ1

b sinφ1

cosφ1

0
0
0


, H

′2

c =



−b sinφ2

0
b sinφ2

−b sinφ2

0
cosφ2

0
0


, H

′3

c =



−b sinφ3

−b sinφ3

0
b sinφ3

0
0

cosφ3

0


, H

′4

c =



−b sinφ4

b sinφ4

−b sinφ4

0

0
0
0

cosφ4


(119)

The matrix of hamiltonian time-evolution generator H̃ is used to induce
the 90o phase shift with regard to Hκ

c . We can now define two new sets of
states using Hκ

c and H ′κ
c .

Hκ
− = Hκ

c +H ′κ
c electron

Hκ
+ = Hκ

c −H ′κ
c positron

(120)

The Hκ
− states are those of the electron in the restframe while the states

of Hκ
+ have a 180o phase difference as in the positron case.

∑
κ=1..4

Hκ
− H̄

κ
− =

(
+m pµ σ

µ

pµ σµ +m

)
= γµpµ +m

∑
κ=1..4

Hκ
+ H̄κ

+ =
(
−m pµ σ

µ

pµ σµ −m

)
= γµpµ −m

(121)

Indeed when we determine the spin sums (121), which turn out to be time
independent in these cases, then we get the spin sums of the electron and
positron respectively.
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.
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3 The three charges of SO(4)∼= Spin(3)⊗Spin(3)
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3.1 The charge generators of SO(4)

A single spinor has four independent parameters. The most general trans-
formation matrix operating on the spinor is a 4× 4 real valued matrix. As
a result the most complete group of unitary rotation generators is given
by the group SO(4). This group decomposes into two three dimensional
subgroups with generators Jabs

i and Jrel
i as.

SO(4) ∼= Spin(3)abs ⊗ Spin(3)rel (122)

In order see how SO(4) does split into two spin(3) groups we first write
out all six generators of rotation of SO(4) in real valued 4×4 matrix form.

The six individual rotation generators of SO(4) (123)

J lo
x =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

, J lo
y =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

, J lo
z =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



Jhi
x =


0 1 0 0

−1 0 0 0
0 0 0 0
0 0 0 0

, Jhi
y =


0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

, Jhi
z =


0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0


We have organized the rotation generators in two groups, one with the
generators in the lower 3×3 matrix and one with the other three. The
commutation relations are given by.[

~J lo

i , ~J lo

j

]
= ~J lo

k

[
~J lo

i , ~J hi

j

]
= ~J hi

k[
~J hi

i , ~J hi

j

]
= ~J lo

k

[
~J hi

i , ~J lo

j

]
= ~J hi

k

(124)

We see that these two subgroups mix. They are not independent. From the
commutation rules we see how we can obtain the two independent spin(3)
groups via the following linear combinations.

~J abs = 1
2

(
~J lo + ~J hi

)
~J rel = 1

2

(
~J lo − ~J hi

)
(125)
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These two subgroups do commute. They are the independent spin(3)
groups in which SO(4) decomposes.[

~J abs

i , ~J abs

j

]
= ~J abs

k

[
~J abs

i , ~J rel

j

]
= 0[

~J rel

i , ~J rel

j

]
= ~J rel

k

[
~J rel

i , ~J abs

j

]
= 0

(126)

The matrices of the independent spin(3) generator groups are given by.

The three SO(4) generators of absolute rotation (127)

Jabs
x = 1

2


0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

, Jabs
y = 1

2


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

, Jabs
z = 1

2


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0



The three SO(4) generators of relative rotation (128)

J rel
x = 1

2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

, J rel
y = 1

2


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

, J rel
z = 1

2


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


The square of any of these matrices is -1, the negative unity matrix.

The first set of generators, the Jabs
i group is used for the generators of the

three dimensional absolute rotation in space. The generators of the second
set, the Jrel

i group, become the generators of spinor relative rotation.

The spinor on which they operate defines a relative coordinate system and
it is in this coordinate system in which the rotation takes place. The
direction of the spinor defines one of the directions but a spinor is more
than a vector. A spinor can be viewed as a flagpole and can as such define
a relative coordinate system, something which a vector can’t.

A relative rotation around the spinor’s own axis is identified with the
generator of electric charge and all three spinor relative generators become
charge generators. This is in fact already the case in the standard complex
Pauli matrix representation. The other charge generators are associated
with Majorana particles, generally without realizing the SO(4) origin.
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To show this we will temporary continue the discussion is the standard
complex representation even though the notation is awkward and requires
a complex conjugate operator * (without transpose)

Because we have defined the Jabs
i group, given by Jabs

i = − i
2σi in the

complex notation, as the generators of absolute rotation we can define the
direction ~s of a spinor ξs and with this we impose the requirement from
special relativity that such a spinor ξs is an eigenvector of a boost in the
~s direction,

(~s · ~σ) ξs = s ξs −→ ei~s·~σξs = eisξs (129)

Where (~s · ~σ) is the boost generator. As a consequence the rotation oper-
ator exp(i~s · ~σ) at the righthand side, which rotates the spinor around its
own axis, becomes equivalent to the charge operator exp(is). The charge
generator is part of the second group Jrel

i and therefor the second group
as a whole becomes the group of spinor relative rotation generators.

They rotate a spinor relative to the spinor’s own direction and orientation.
These relative rotators commute with the generators of absolute rotation
because they don’t depend on the absolute orientation of the spinor. In the
standard complex representation of the Dirac equation all six generators,
with the omission of the factor 1

2 , are given by.

absolute rotation generators relative rotation generators

Spin(3)abs Spin(3)rel

−iσ1 x-axis rotation σ2∗ rotation orthogonal to ξs
−iσ2 y-axis rotation iσ2∗ rotation orthogonal to ξs
−iσ3 z-axis rotation i rotation around ξs’s axis

commutation rules commutation rules

1
2

[
− iσ1 , −iσ2

]
= −iσ3

1
2

[
σ2∗ , iσ2∗

]
= i

1
2

[
− iσ2 , −iσ3

]
= −iσ1

1
2

[
iσ2∗ , i

]
= σ2∗

1
2

[
− iσ3 , −iσ1

]
= −iσ2 1

2

[
i , σ2∗

]
= iσ2∗
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3.2 The SO(4) charge generators and Majorana particles

The notation of the other two members of the second group Jrel
i is some-

what awkward in the standard complex notation. It requires the use of a
complex conjugate operator ∗ (without transpose) which acts to the right
on the spinor field. In the 4×4 real notation this conjugation operation is
just a simple 4×4 diagonal matrix.

standard complex notation real symmetric notation

exp(− ωtσ2∗)ψ Majorana exp(−i1ωt)ψ Majorana
exp(−iωtσ2∗)ψ Majorana exp(−i2ωt)ψ Majorana
exp(−iωt )ψ Dirac exp(−i ωt)ψ Dirac

These two complex conjugate generators are well know in combination with
the Majorana particle and its equation. The operators rotate the spinor
always perpendicular to its own direction. There are two orthogonal ways
to do this as shown in figure (15) at the top and hence there are two
corresponding operators.

The generator iσ2∗ is generally known as the parity operator. It always
rotates a spinor around an axis orthogonal to the spinor’s own direction so
that a multiplication with this generator corresponds with a 180o rotation
to the opposite direction.

Note that there is an important difference with a real parity operator,
something which becomes apparent at intermediate angles between 0o and
180o, because the three generators of Jrel

i commute like a rotation group.

The crucial point is that a rotation over 180o flips the spin but leaves the
handedness unchanged. A left chiral component stays left handed. We
know from atomic spectroscopy that Pauli’s exclusion principle allows two
electrons with opposite spin in the same state, so two separate left chiral
components with opposite spin are allowed in the same state.

This would mean that Majorana particles with two such chiral components
are allowed and these particles would always be detected as left handed,
even if they have mass.
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3.3 Visualization of the SO(4) charge generators

Figure 15: The choice of i turns the ix, iy, iz into precession generators
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3.4 The tribimaximal rotation matrix

The real valued representation becomes spatially symmetric when we define
the generator of electric charge as.

i = 1√
3

(
ix + iy + iz

)
(130)

Where the matrices ix, iy and iz correspond to the generators of spinor
relative rotation Jrel

i = 1
2 ii. As we will see, this is not the only thing

worth mentioning that happens at this particular choice. The matrix i
becomes the generator of electric charge corresponding to rotations around
the spinors own axis.

We will define the two other (perpendicular) charge generators i1 and i2
now which must perpendicular to i. We use the so called tribimaximal
rotation matrix to define the set of generators as a whole. i1

i2
i

 =


√

2/3 −
√

1/6 −
√

1/6
0

√
1/2 −

√
1/2√

1/3
√

1/3
√

1/3

 ix
iy
iz

 (131)

Both sets of orthogonal generators are visualized in figure (16) which in-
cludes projection shadows in the three directions. We are free to rotate
the two perpendicular rotators using an arbitrary mixing angle θ so a more
general form of the rotation is given by.

 i1
i2
i

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


√

2/3 −
√

1/6 −
√

1/6
0

√
1/2 −

√
1/2√

1/3
√

1/3
√

1/3

 ix
iy
iz

 (132)

All three generators are orthogonal for any choice of cos θ. We will derive
the set of gamma matrices for the currents associated with ix, iy and iz dur-
ing the treatment of the non Abelian Lagrangian, see (166). The gamma
matrices for the currents generated by i1 and i2 can then be constructed
using the above transformation matrix.

From the side projection in figure (16) we see that the generators ix, iy
and iz each contributes 1

3q to the electric charge. The top projection may
remind the reader to the SU(3) root diagram.
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3.5 Visualization of the Tribimaximal rotation

Figure 16: Symmetric SO(4) charges: Perspective, top and side view
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3.6 Spinors as flagpoles and absolute rotation

Figure 17: The six absolute rotation commutation rules visualized
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3.7 The spinor relative frame and relative rotation

Figure 18: The non-Abelian currents as spinor relative frame pointers

Figure (17) visualizes the spinor as a flagpole under absolute rotations with
regard to the x, y and z-axis. The corresponding rotation generators are
from the first Spin(3) group of SO(4)

SO(4) ∼= Spin(3)abs ⊗ Spin(3)rel (133)

The generators of the second Spin(3) group rotate the spinor relative to
its own reference frame. This spinor reference frame is defined by three
pointers (currents) defined in the real representation by.

ji1 = ψᵀ σi
1 ψ

ji2 = ψᵀ σi
2 ψ

ji = ψᵀ σi ψ

(134)

The last one ji is just the spinor pointer obtained by using the normal
Pauli matrices as applied in the vector current. The other two pointers
correspond with currents which we will obtain from requiring gauge in-
variance of the non Abelian SO(4) Lagrangian. The corresponding sets of
Pauli matrices σi

1 and σi
2 are given in (167)
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3.8 The time evolution operator and the SO(4) charges

The particle states as shown in figure (15) are all possible eigenstates of
the Dirac equation, however only the top tree are physically viable in the
sense that they can be non-radiating. We’ll look here in more detail in the
possible eigenstates of the Dirac equation.

The time evolution Hamiltonian for a particle obeying the standard com-
plex Dirac equation iγµ∂µψ = mψ and defined in the particle’s local rest
frame, so that the spatial derivatives are zero, simplifies to just.

H =
∂

∂t
= − iγom = −

(
0 im
im 0

)
(135)

The time evolution operator in the particle’s rest frame

eHt = cos(mt)
(

1 0
0 1

)
− i sin(mt)

(
0 1
1 0

)
(136)

Which can be considered as a periodically swapping operator which con-
tinuously exchanges the two chiral states.

eHt

(
ξL
ξR

)
= cos(mt)

(
ξL
ξR

)
− i sin(mt)

(
ξR
ξL

)
(137)

The type of the particle is therefor determined by the relation between
ψL and ψR in the local restframe. Most notably we have the electron at
rest: ψL = +ψR and the positron at rest: ψL = −ψR which leads to the
corresponding time evolutions of these particles.

The electron state:

ψ(t) = eHt

(
ξ
ξ

)
=

(
e(−imt) ξ

e(−imt) ξ

)
(138)

The positron state:

ψ(t) = eHt

(
ξ

−ξ

)
=

(
e(+imt) ξ

−e(+imt) ξ

)
(139)
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These two correspond to the two elementary plane wave states but there
are many more theoretical possible states. Let us systematically go through
the other possibilities. In the standard complex rotation we can relate ψL

and ψR by an arbitrary phase φ corresponding to a 2φ rotation around
the spinors own axis. The cases of 2φ = 0o and 360o are the electron and
positron states. The orthogonal ±180o states are defined by.

180o spinor axial rotated states:

ψ(t) = eHt

(
∓ξ
i ξ

)
=

√
2
(

cos
(
mt± π

4

)
ξ

± sin
(
mt± π

4

)
ξ

)
(140)

We see that there is no more phase evolution eiφ because the i in the ratio
of the chiral components cancels with the i in the Hamiltonian generator.

The bi-spinor alternates between the left and the right chiral components.
This is not a viable physical state since both the vector current as well as
the axial current are alternating as a result. The alternating vector current
would mean constant energy loss due to radiation.

Majorana states, up-down spinor combinations

We did see that it’s the actual content of the spinor which defines the
behavior of the particle. The majorana states occur when we combine a
spin-up and a spin-down spinor in the general form of.

ψ = eHt

(
ξ↑

eiφξ↓

)
= eHt

(
ξ

eiφσ2∗ ξ

)
(141)

The extra degree of freedom φ comes from the different ways in which
we can rotate an up-spinor into a down-spinor: any linear combination of
the two perpendicular 180o rotations via the two operators σ2∗ and iσ2∗.
These operators form the second Spin(3) group in SO(4) together with the
charge generator i. (∗ = complex conjugate without transpose)

complex representation real representation

1
2

[
σ2∗ , iσ2∗

]
= i 1

2

[
i1 , i2

]
= i

1
2

[
iσ2∗ , i

]
= σ2∗ 1

2

[
i2 , i

]
= i1

1
2

[
i , σ2∗

]
= iσ2∗ 1

2

[
i , i1

]
= i2
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The two generators of spinor relative, perpendicular rotation give rise to
the two Majorana type particle states.

The Majorana states:

ψ(t) = eHt

(
ξ

σ2∗ξ

)
=

(
e(−iσ2mt∗) ξ

e(−iσ2mt∗) ξ

)
(142)

ψ(t) = eHt

(
ξ

iσ2∗ξ

)
=

(
e(+ σ2mt∗) ξ

e(+ σ2mt∗) ξ

)
(143)

These two states can be combined with the use of the angle φ to a single
Majorana state expression.

The Majorana states:

ψ(t) = eHt

(
ξ

eiφσ2∗ ξ

)
=

(
e(−ieiφσ2mt∗) ξ

e(−ieiφσ2mt∗) ξ

)
(144)

In the real symmetric representation we have the special real 4×4 matrices
i1 and i2 which are the generators of spinor perpendicular rotation.

The Majorana states in the real symmetric representation:

ψ(t) = eHt

(
ξ

i1 ξ

)
=

(
e(−i2mt) ξ

e(−i2mt) ξ

)
(145)

ψ(t) = eHt

(
ξ

i2 ξ

)
=

(
e(+i1mt) ξ

e(+i1mt) ξ

)
(146)
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3.9 Propagation of Dirac and Majorana particles

Figure 19: Dirac and Majorana particles
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3.10 The currents of the SO(4) charges from the Lagrangian

In the standard complex representation there is a single current corre-
sponding to the Abelian generator of phase i and its time evolution opera-
tor exp(−iωt). The Lorentz transform turns this phase change rate in time
into a four vector jµ depending on the pase change rates in the direction
of the four coordinates xµ.

i −→ exp(−i pµxµ) −→ jµ −→ ψ̄ γµ ψ (147)

The gamma matrices γµ and the corresponding Pauli matrices come from
the rotation group Spin(3) which is represented by SU(2) in the standard
complex rotation.

The general transformation matrix for a single spinor (with four para-
meters) is a 4 × 4 matrix and so the complete group of unitary rotation
generators is given by SO(4). This group decomposes into two Spin(3)
subgroups as follows.

SO(4) ∼= Spin(3)abs ⊗ Spin(3)rel (148)

The first Spin(3) subgroup is used for the generators of the three dimen-
sional absolute rotation in space. The second Spin(3) subgroup contains
the generators of charge. This subgroup gets three currents instead of one
when we impose a local gauge invariance on the group. There are two
alternative ways to classify these three currents and corresponding sets of
Pauli matrices.

ix −→ exp(−ix p
µxµ) −→ jµx −→ ψ̄ γµ

x ψ

iy −→ exp(−iy p
µxµ) −→ jµy −→ ψ̄ γµ

y ψ

iz −→ exp(−iz p
µxµ) −→ jµz −→ ψ̄ γµ

z ψ

i1 −→ exp(−i1 p
µxµ) −→ jµ1 −→ ψ̄ γµ

1 ψ

i2 −→ exp(−i2 p
µxµ) −→ jµ2 −→ ψ̄ γµ

2 ψ

i −→ exp(−i pµxµ ) −→ jµ −→ ψ̄ γµ ψ

(149)
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3.11 The gauge invariant non-Abelian Lagrangian of SO(4)

We now assume that there might be conditions under which not only the
phase of i but also the phase of i1 and i2 becomes a function of the location
xµ then the requirement of local gauge invariance of the Lagrangian will
provide us with the non Abelian (connection) fields which are responsible
for the variation as well as the source currents for these fields.

It is easier to start with ix, iy and iz. We can obtain the Dirac equation
which the corresponding non-Abelian fields directly from the QED version
(37) by substituting.

i = 1√
3

(
ix + iy + iz

)
(150)

and adding an index to Aµ which becomes the non-Abelian Aa
µ field.

The real valued, non-Abelan Dirac equation(
0 iσµ

iσ̃µ 0

)(
∂µ +

(
ia 0
0 ia

)
e
√

3
Aa

µ

)
ψ = mψ (151)

We can express this in a more compact notation as.

i γµDaψ = mψ (152)

Where Da is the gauge covariant derivative which is indexed by a

From the Abelian QED Lagrangian (100) we can now write the total non-
Abelian Lagrangian including the field term as.

L = 1
2 ψ̄ (iγµDa)ψ − 1

4 (F µ
a ν)

2 − 1
2mψ̄ψ (153)

The non-Abelian field term is obtained using [ ia, ib] = −2εabc ic

F a
µν =

[Da , Da ]
e ia
√

1/3
= ∂µA

a
ν − ∂νA

a
µ −

2e
√

3
εabcAb

µA
c
ν (154)

Note that i−1
a is just −ia as in the case of the imaginary number i.
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This Lagrangian leads to the Dirac equation given by varying the field ψ,
whereby φ̄ is again just ψ γo and ψ is the only field we need to vary in the
Euler Lagrange procedure. The equations of motions for the non-Abelian
fields give us the source currents jµa of the non-Abelian fields Aµ

a .

∂νF µ
a ν − e′Aν

b F
µ

a ν = e′ ψ̄
(

1
2 iaγ

µ
)
ψ with e′ =

2e
√

3
(155)

jµ
a = − ψ̄

(
1
2 iaγ

µ
)
ψ = ψ̄ γµ

a ψ (156)

The rightmost expression defines one set of gamma matrices for each of
the three values of a

γµ
a = 1

2

 0 σµ
a

σ̃µ
a 0

 (157)

Once we have the corresponding three sets of Pauli matrices for the cur-
rents corresponding with the generators ix, iy and ia then we can use the
tribimaximal rotation to obtain the set Pauli matrices for the currents
corresponding with the generators i1, i2 and i

The sets of Pauli matrices are thus related to each other by.
σµ

1

σµ
2

σµ

 =


√

2/3 −
√

1/6 −
√

1/6

0
√

1/2 −
√

1/2√
1/3

√
1/3

√
1/3



σµ

x

σµ
y

σµ
z

 (158)

Where the σµ are the standard Pauli matrices and σµ
1 and σµ

2 are the Pauli
matrices corresponding to the currents of perpendicular spinor relative
rotation. The commutation relations are given by.

1
2

[
σi

x , σ
j
x

]
= ixσk

x
1
2

[
σi

1 , σ
j
1

]
= i1σk

1

1
2

[
σi

y , σ
j
y

]
= iy σk

y
1
2

[
σi

2 , σ
j
2

]
= i2σk

2

1
2

[
σi

z , σ
j
z

]
= iz σk

z
1
2

[
σi , σj

]
= i σk

(159)



3.12 Asymmetries in the time component Pauli matrices 76

3.12 Asymmetries in the time component Pauli matrices

Typically all Pauli matrices are symmetric while the unitary generators
which are all asymmetric. For instance we have.

(σµ)ᵀ = σµ, (iσµ)ᵀ = − iσµ (160)

Which is identical to the following in the standard complex representation.

(σµ)† = σµ, (iσµ)† = − iσµ (161)

This pattern is however broken in the case of the time component Pauli
matrices for the non-Abelian currents which can be partly or whole asym-
metric which amounts to a fundamental different behavior . The corre-
sponding space component Pauli matrices are always symmetric for any
current.

If we define an arbitrary charge generator (ς̂ · î ) via three normalized co-
efficients ς̂ (see the table below) and the orthogonal base generators î.

î = { ix, iy, iz } = J i
rel (162)

ĉx 1 0 0 ĉ1 2√
6

−1√
6

−1√
6

ĉy 0 1 0 ĉ2 0 1√
2

−1√
2

ĉz 0 0 1 ĉ 1√
3

1√
3

1√
3

(163)

Then we can write for the Pauli matrices of such a charge generator.

σo
ς = − (ĉ · î )(ς̂ · î ), σi

ς = J i
abs(ς̂ · î ) (164)

We can split the time component matrices in a symmetric and an asym-
metric part determined by the angle between the coefficients ς̂ and ĉ.

σo
ς = (ς̂ · ĉ) 1 + (ς̂ × ĉ) · î (165)
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3.13 Pauli matrices for the non Abelian currents (rep.1)

Pauli matrices for Pauli matrices for Pauli matrices for

j
µ

x
j

µ

y
j

µ

z

σox = 1√
3
× σoy = 1√

3
× σoz = 1√

3
×


1 0 −1 1
0 1 1 1
1 −1 1 0

−1 −1 0 1




1 1 0 −1
−1 1 −1 0

0 1 1 1
1 0 −1 1




1 −1 1 0
1 1 0 −1

−1 0 1 −1
0 1 1 1


σxx = σxy = σxz =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0


σyx = σyy = σyz =


0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


σzx = σzy = σzz =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1



(166)
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3.14 Pauli matrices for the non Abelian currents (rep.2)

Pauli matrices for Pauli matrices for Pauli matrices for

j
µ

1
j

µ

2
j

µ

σo1 = 1√
2
× σo2 = 1√

6
× σo =


0 0 −1 1
0 0 1 1
1 −1 0 0

−1 −1 0 0




0 2 −1 −1
−2 0 −1 1

1 1 0 2
1 −1 −2 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


σx1 = 1√

6
× σx2 = 1√

2
× σx = 1√

3
×


2 0 1 −1
0 2 −1 −1
1 −1 −2 0

−1 −1 0 −2




0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0




1 0 −1 1
0 1 1 1

−1 1 −1 0
1 1 0 −1


σy1 = 1√

6
× σy2 = 1√

2
× σy = 1√

3
×


−1 −1 0 −2
−1 1 2 0

0 2 −1 −1
−2 0 −1 1




1 −1 0 0
−1 −1 0 0

0 0 1 −1
0 0 −1 −1




1 1 0 −1
1 −1 1 0
0 1 1 1

−1 0 1 −1


σz1 = 1√

6
× σz2 = 1√

2
× σz = 1√

3
×


−1 1 2 0

1 1 0 2
2 0 1 −1
0 2 −1 −1



−1 −1 0 0
−1 1 0 0

0 0 1 1
0 0 1 −1




1 −1 1 0
−1 −1 0 1

1 0 −1 1
0 1 1 1


(167)
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3.15 The general expression for the non-Abelian currents

Here we set out to calculate how the non-Abelian currents depend on a
time evolution of the non-Abelian phase of a spinor in the general form of

ξs −→ exp(−1
2~ω · î t) ξs = ψ (168)

Where î is an orthogonal set of unitary charge generators for instance.

î = { ix, iy, iz } (169)

Or another orthogonal set as long as it obeys the commutation rules.

1
2 [ ix , iy ] = iz,

1
2 [ iy , iz ] = ix,

1
2 [ iz , ix ] = iy, (170)

In order to calculate the vector and axial currents we’ll need to be able to
calculate the bilinear expression for a (single) spinor.

ψᵀ σµ
ς ψ = ξᵀ

s exp(1
2~ω · î t) σ

µ
ς exp(−1

2~ω · î t) ξs (171)

Where the Pauli matrices σµ
ς determine the current corresponding to the

arbitrary generator (ς̂ · î ) which are given by (164) as.

σo
ς = (ς̂ · ĉ) 1 + (ς̂ × ĉ) · î

σi
ς = J i

abs (ς̂ · î )
(172)

The hats denote unit vectors. The quantity (ĉ · î ) used here is the base of
the representation. In our symmetric representation this base is fixed to.

i = cxix + cyiy + cziz = 1√
3

(
ix + iy + iz

)
(173)

The same base occurs also in the expression for a unit spinor ξs pointing
in the ~s direction given by. (see equation 15)

ξs =
( s+ c )
‖ s+ c ‖

with:
s = ( 0, sx, sy, sz )

c = ( 0, cx, cy, cz )
(174)

All definitions required to calculate the currents are now on the table.
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We can handle this again with the use of the CBH equation related series.

eXY e−X = Y + [X,Y ] +
1
2!

[X, [X,Y ]] +
1
3!

[X, [X, [X,Y ]]] + · · · (175)

The series is trival if Y commutes with X so we look first for the non-
commuting parts of the general Pauli matrices in (172) which are substi-
tuted in Y . The generators of absolute rotation J i

abs commute so they
become just a factor which we can apply afterwards so we are left with.

non-commuting part of: σo
ς = (ς̂ × ĉ) · î

non-commuting part of : σi
ς = (ς̂ · î )

(176)

The relevant factor in X is given by (~ω ·~i) or expressed with a unit vector
like ω(ω̂ · î). For the commutation calculations we’ll make us of the rule.

(â · î)(b̂ · î) = − (â · b̂) 1 + (â× b̂) · î (177)

The right most term survives in the commutation so we have.[
â · î , b̂ · î

]
= 2 (â× b̂) · î (178)

So from the term [X,Y ] we find the non-commutative parts which will go
into the rest of the series.[

(ω̂ · î) , σo
ς

]
∝ (ω̂ × (ς̂ × ĉ)) · î[

(ω̂ · î) , σi
ς

]
∝ (ω̂ × ς̂) · î

(179)

At this point we can see it coming that the terms [X,Y ] series become
repeated cross products with ω̂ in the form of.

ω̂ × (ω̂ × (ω̂ × (· · · (180)

The results will alternate between two vectors which are both orthogonal
to ω̂ while they are also orthogonal between the two of them.



3.15 The general expression for the non-Abelian currents 81

We’ll make us of the following general vector identity.

â× (b̂× ĉ) = (â · ĉ) b̂ − (â · b̂) ĉ (181)

Which simplifies in the repeated case here to.

(ω̂ × (ω̂ × ς̂)) = (ω̂ · ς̂) ω̂ − ς̂ (182)

With this the series simplifies to a series with the expected alternating
behavior between two orthogonal components.

ς̂ −→ + ς̂

ω̂ × ς̂ −→ + ω̂ × ς̂

ω̂ × (ω̂ × ς̂) −→ − ς̂ + (ω̂ · ς̂)ω̂
ω̂ × (ω̂ × (ω̂ × ς̂)) −→ − ω̂ × ς̂

ω̂ × (ω̂ × (ω̂ × (ω̂ × ς̂))) −→ + ς̂ − (ω̂ · ς̂)ω̂
ω̂ × (ω̂ × (ω̂ × (ω̂ × (ω̂ × ς̂)))) −→ + ω̂ × ς̂

(183)

The only exception is the first term ς at the start of the series before any
cross product with ω̂ takes place. If we correct this with an additional
−(ω̂ · ς̂)ω̂ term then we can express the series as a cosine and a sine.

[
(ω̂ · ς̂)ω̂ · î

]
+
[
(ς̂ − (ω̂ · ς̂)ω̂) · î

]
cosωt +

[
(ω̂ × ς̂) · î

]
sinωt (184)

We can recombine the cosine and sine into a pure exponential with a matrix
argument as follows.

[
(ω̂ · ς̂)ω̂ · î

]
+
[
((ω̂ × ς̂)× ω̂) · î

]
cosωt +

[
(ω̂ × ς̂) · î

]
sinωt (185)

=
[
(ω̂ · ς̂)ω̂ · î

]
+
[
((ω̂ × ς̂)× ω̂) · î

]
exp(−~ω · î t) (186)

Here we also see that ratio between the first (invariant) term and the
second (time varying) term depends on the angle between ω̂ and ς̂ since.

(ω̂ · ς̂) = cos θ, (ω̂ × ς̂) = sin θ (187)
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The difference between the two vectors is just ς̂ as can be seen in this way.[
(ω̂ · ς̂)ω̂ · î

]
+
[
(ς̂ − (ω̂ · ς̂)ω̂) · î

]
exp(−~ω · î t) (188)

The time varying part of the current disappears if ω̂ = ς̂. In this case
the spinor is rotating around its own axis. This because ς̂ determines the
base vectors and the relative rotation corresponding with a spinor rotating
around its own axis.

At this point we can already see all properties of the spatial components
of the general vector current for a single spinor. The current of a spinor
going through a non-Abelian phase change in SO(4) according to.

ξs −→ exp(−1
2~ω · î t) ξs = ψ (189)

Measured in an arbitrary non-Abelian base ς̂ ·̂i has the following properties:

Basic properties of the general vector current

• The vector current precesses around and traces out a cone.

• The angle of the cone with its central axis is the same as the angle
between the vectors ω̂ and ς̂

• The direction of the central axis of the cone is the same as the direc-
tion of the spinor when the base ς̂ = ω̂. So it is ω̂ which determines
the direction of the central axis.
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3.16 The Lorentz transform of the SO(4) charge operators

All the charge generators of SO(4) commute with the rotation generators
of SO(4) due to the general group structure,

SO(4) ∼= Spin(3)abs ⊗ Spin(3)rel (190)

in which the two Spin(3) groups commute with each other. However, only
the charge generator i of electric charge commutes with the boost operation
due to the definition of rotations and boosts.

exp
(
−1

2 i~σ · ~φ
)

= exp
(

~J · ~φ
)

general rotation operator

exp
(
±1

2 ~σ · ~ϑ
)

= exp
(
±i ~J · ~ϑ

)
general boost operator

(191)

The charge generator i commutes with itself and therefor with the general
boost operator. Note that the rotation operator is actually independent
of i while the Pauli matrices and the boost operator do dependent on the
particular choice of i.

So, while a pure rotation of a spinor around its own axis stays a pure
rotation in any reference frame, this is not the case with rotations of the
spinor around an axis perpendicular with itself. Consequently we have
to transform first to the reference frame in which we want to rotate and
transform back after the rotation. So a generator Y transforms like.

Y −→
(
e−~ϑ·~σ/2

)
Y
(
e ~ϑ·~σ/2

)
= (192)

The consequences of the commutation relations are given by the following
expression related to the Baker Campbell Hausdorff formula.

eXY e−X = Y + [X,Y ] +
1
2!

[X, [X,Y ]] +
1
3!

[X, [X, [X,Y ]]] + · · · (193)

Where Y stands for the non-commuting charge generators i1 and i2 while
as far as the X is concerned we only need to take the generator i into
account.
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The individual commutation relations of the charge operators are those of
a rotation group.

[ i , i1 ] = 2i2, [ i1 , i2 ] = 2i, [ i2 , i ] = 2i1 (194)

This means that the commutators in the series (193) in the cases of i1 and
i2 become. (ignoring the 1/n! factors)

X =
i

2
, Y =

i1
2

−→ i1
2

{
i,−1,−i, 1, i, · · ·

}
(195)

X =
i

2
, Y =

i2
2

−→ i2
2

{
i,−1,−i, 1, i, · · ·

}
(196)

If we now exponentiate the generators into operators we get a cosine part,
which always commutes, and a sine part which doesn’t commute in case
of i1 and i2. The sine term gets an extra boost factor in these cases.

eαi1t −→ 1 cosαt + i1 sinαt
(
e ~ϑ·~σ

)
eαi2t −→ 1 cosαt + i2 sinαt

(
e ~ϑ·~σ

)
eαi t −→ 1 cosαt + i sinαt

(197)

The Lorentz transform guarantees with this boost correction that a per-
pendicular spinor rotation in its rest frame doesn’t change the overall
speed, or current, when viewed from another reference frame. The current
J = JL + JR remains constant under perpendicular rotation, see fig.(20)

Figure 20: The current remains constant under perpendicular rotation.
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3.17 An experimental hint of physical SO(4) currents

The three generators ix, iy and iz become the three orthogonal genera-
tors of spin 1

2 precession in the symmetric representation. By making the
non-Abelian SO(4) Lagrangian locally gauge invariant we obtain the three
associated current. We would like to consider these currents as physical
and independently existing currents for various reasons. Here we will pro-
vide some experimental confirmation in the form of the numerical values
of the electroweak charges, in other words the coupling parameters. We
can have either one of the two following possibilities.

• Three generators ix, iy and iz acting on a single current jµ.

• Three generators ix, iy and iz along with the three currents jµx, jµy , jµz .

In the latter case we have jµ = jµx + jµy + jµz and the three sub currents
individually are always precessing according to the spin 1

2 ratio but the
total current jµ can be anything. It can be a Dirac current with the spinor
rotating around its own axis or it can be a Majorana current with the
spinor rotating perpendicular to its own axis. In both cases the unwanted
components cancel and only the required ones remain.

We consequently expect jµ = jµx + jµy + jµz to be the source of the Aµ field
in one configuration, as well as the source of, for example, Wµ

± in another
configuration. However, based on the preceding paragraphs, this source
process can not be 100% efficient since there are always current components
that cancel. This is then where the coupling parameters come in, and they
do so already at the level of the equations of motion.

We should be able to determine the efficiency of the source process from
figure (21) which shows one of the three jµx, jµy and jµz source currents. The
current is precessing with an angle α which is determined by the spin 1

2 of
the particle.

The question is what percentage of this precessing motion translates into
a rotation around the spinors own axis. From figure (21) we see that the
efficiency is maximal when α = 90o and the efficiency is zero when α = 0o.
In the same way we can use the complementary angle β to determine the
effective contribution of the precessing motion to a pure perpendicular
rotation. It’s maximum is at β = 90o while the efficiency is zero at β = 0o.



3.18 Visualization of the SO(4) spinor projections 86

3.18 Visualization of the SO(4) spinor projections

Figure 21: base-vectors as
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If we now assume that the physical source process takes place in spinor
space then we accordingly must use half angles and may expect that the
electric and weak charges (the coupling parameters) are expressed by sin 1

2α
and sin 1

2β as determined directly by the equations of motion in first ap-
proximation. We find:

Electric charge Weak charge

sin 1
2α = 0.30290 (calculated) sin 1

2β = 0.4597 (calculated)

e = 0.30282 (measured) 1√
2
g = 0.4538 (measured)

(198)

So there is a satisfying correspondence to the measured values of the cou-
pling parameters as they occur in the Lagrangian of the Standard model.
The second measured value is calculated from direct measurements.

1√
2
g = 1√

2

e√
1− M2

w

M2
z

(199)

We can take this dual correspondence as an indication that the three cur-
rents jµx, jµy and jµz which arise form the local gauge invariance of the non
Abelian SO(4) Lagrangian have a physical relevance and proceed our in-
vestigations further along this path.

Note that the overall values that turn up in the Lagrangian are the squares
e2 and ( 1√

2
g)2. It is conventional to use the coupling parameter e once in

the efficiency of the process where the current ψ̄γµψ is the source of the
field Aµ (in the fermion vertices) and for the second time in the coupling
of Aµ to the current in the Lagrangian. So the overall efficiency is e2. This
is just the classical convention from electromagnetic field theory

Here we find the coupling parameters in spinor space rather then in config-
uration space and hence the bilinear currents already contain the squares
of these parameters. This would mean that the inefficiency in the physical
process is entirely determined by the source process ψ̄γµψ → Aµ while
the coupling between Aµ and jµ as it occurs in the Lagrangian is 100%
effective.


